- 用Python玩转Hyperledger:构建企业级区块链解决方案
Echo_Wish
Python!实战!perlpythonopencv人工智能
用Python玩转Hyperledger:构建企业级区块链解决方案大家好,我是Echo_Wish。在区块链技术的炙手可热中,“企业级区块链”俨然成为了下一个重磅关键词。相比于公有区块链,企业级区块链更注重隐私性、灵活性和高效性。而在这片“蓝海”中,Hyperledger项目无疑是企业级区块链解决方案的标杆。如果再搭配上Python这种“高效工具”,简直让人事半功倍!那么,如何将Python与Hyp
- 知识库全链路交互逻辑
賢843
软件测试理论基础python
阶段顺序URL输入→网络连接→前端请求→后端处理→数据库交互→数据返回→前端渲染→连接关闭阶段1:用户输入URL用户行为:在浏览器地址栏输入`https://knowledge.com/search?keyword=金融趋势`浏览器动作:“浏览器解析URL:协议补全:若用户省略协议,浏览器自动添加https://(若网站支持HTTPS)字符转义:对中文、空格等特殊字符编码(如金融趋势→%E9%
- 安卓 app 上应用商店地址集合
圣京都
uni-app
腾讯应用宝开放平台360手机助手开放平台百度手机助手/安卓市场/91助手开发者平台小米华为荣耀魅族vivooppo三星阿里
- 边缘计算Edge Computing
福梦
IoT
最近工作有接触到这个概念,先贴点资料在这里吧。OverviewEdgecomputingpushesapplications,dataandcomputingpower(services)awayfromcentralizedpointstothelogicalextremesofanetwork.Edgecomputingtakesadvantageofmicroservicesarchitec
- ROS机器人边缘计算:EdgeComputing与ROS
AI天才研究院
计算AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA计算AI大模型应用
1.背景介绍1.1机器人操作系统(ROS)机器人操作系统(RobotOperatingSystem,简称ROS)是一个用于机器人软件开发的灵活框架。它提供了一系列工具、库和约定,使得创建复杂且健壮的机器人应用变得更加容易。ROS的核心是一个消息传递系统,它允许不同的软件模块(称为节点)之间进行通信。这种模块化设计使得开发人员可以更容易地重用和共享代码,从而加速了机器人软件的开发过程。1.2边缘计算
- 边缘计算(Edge Computing)
Dream Algorithm
边缘计算人工智能
边缘计算(EdgeComputing)是一种分布式计算范式,它将数据处理和存储功能从传统的集中式云端转移到靠近数据源的网络边缘设备(如路由器、网关、本地服务器或终端设备)。边缘计算的目标是减少数据传输延迟、降低带宽压力,并提高系统的实时性和可靠性。边缘计算的核心概念靠近数据源边缘计算将计算资源部署在靠近数据生成的地方,而不是将所有数据发送到远程云端处理。分布式架构边缘计算采用分布式架构,将计算任务
- Flutter 常用组件大全
笔沫拾光
flutter
Flutter常用组件大全Flutter提供了丰富的组件来构建UI,以下是常见的组件,按功能类别分类。1️⃣基础布局组件组件作用示例Container盒子容器,支持装饰、边距、大小Container(width:100,height:100,color:Colors.red)Padding内边距Padding(padding:EdgeInsets.all(10),child:Text("Hello
- 如何让你的应用在市场中脱颖而出?
fiddler
开发者在完成应用开发并成功上架应用市场后,将面临一项重要挑战:如何在竞争激烈的环境中脱颖而出,吸引用户的关注?为此,提升应用的曝光度和下载量至关重要。HarmonyOSSDK应用市场服务(StoreKit)提供应用市场业务的对外开放能力,针对想要获得曝光的应用,StoreKit提供了应用市场推荐和应用市场更新功能的能力,可以更好地支持应用的下载、推荐和分发等场景,以提高在应用市场上的曝光度,助力开
- 大模型高效优化技术全景解析:微调、量化、剪枝、梯度裁剪与蒸馏
时光旅人01号
人工智能剪枝算法深度学习数据挖掘人工智能
目录微调(Fine-tuning)量化(Quantization)剪枝(Pruning)梯度裁剪(GradientClipping)知识蒸馏(KnowledgeDistillation)技术对比与协同策略总结与趋势1.微调(Fine-tuning)核心思想在预训练模型(如BERT、GPT)基础上,通过领域数据调整参数,适配下游任务。方法流程预训练模型加载:加载通用模型权重(如HuggingFace
- 【Agent实战】发票信息识别提取专家(AI +OCR技术结合ChatGPT4o能力+结构化prompt(CoT、One-shot等)+Knowledge - RAG+API工具Agent项目实践)
姚瑞南
大模型落地探索及agent搭建RAG技术应用探索prompt实战应用案例人工智能ocrpromptAIGCchatgptgptagi
本文原创作者:姚瑞南AI-agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)目录1.项目背景2.项目目标定性:定量:3.发票核心字段概述4.关键举措5.Workflow设计思路及编排5.1整体设计思路5.2流程搭建及解读流程解读:代码节点:解析agent数据
- 如何打造TikTok矩阵:多账号管理与内容引流的高效策略
m0_74891046
矩阵
随着短视频平台的崛起,TikTok成为了全球范围内最具影响力的社交平台之一。在这个平台上,通过精确的内容营销和运营策略,许多创作者和品牌成功实现了曝光、粉丝增长和变现。为了提高运营效率,许多专业的内容创作者和团队开始使用TikTok矩阵系统,借助多个账号同时运营和引流,进一步放大曝光效果。本文将介绍如何打造一个高效的TikTok矩阵,帮助你利用多个账号进行精准引流,提升内容创作和运营效率,并实现变
- 知识蒸馏中的温度参数 T(Temperature)的作用
彬彬侠
大模型Temperature温度参数知识蒸馏Distillationpytorchpython
知识蒸馏中的温度参数TTT(Temperature)的作用1.什么是温度参数TTT?在知识蒸馏(KnowledgeDistillation,KD)过程中,教师模型的输出通常是一个概率分布(通过softmax计算得到)。温度参数TTT控制softmax的平滑程度,使得学生模型可以更好地学习教师模型的知识。在标准的softmax函数中,类别iii的概率计算如下:Pi=ezi∑jezjP_i=\frac
- AI学习指南RAG篇(5)-RAG的系统架构
俞兆鹏
AI学习指南ai
文章目录一、引言二、RAG系统的四个核心组件1.知识库处理模块1.1文档收集1.2文档预处理1.3示例代码2.向量化模块2.1文本嵌入2.2向量数据库2.3示例代码3.检索引擎3.1检索算法3.2检索结果排序3.3示例代码4.生成模块4.1生成模型4.2提示工程4.3示例代码三、RAG系统的架构图四、总结一、引言RAG(Retrieval-AugmentedGeneration,检索增强生成)技术
- 【GPT入门】第16课 RAG入门
*星星之火*
大模型gpt
【GPT入门】第16课RAG入门1.RAG概念核心原理主要应用优势挑战RGA工作图解2.RAG系统基本搭建流程1.RAG概念RAG通常指检索增强生成(Retrieval-AugmentedGeneration),是一种将检索技术与生成式人工智能相结合的技术架构,以下是关于它的详细介绍:核心原理检索:RAG会在大量的文本数据中进行检索,这些数据可以是网页、文档、知识库等。它通过各种检索算法和技术,快
- 深入了解京东商品详情API接口
数据捕手19970108018
爬虫技能晋升路线java前端python大数据
一、接口概述京东商品详情API接口是京东开放平台为开发者提供的用于获取京东平台上商品详细信息的通道。通过调用该接口,开发者能够获取到丰富的商品相关数据,以满足各种业务需求,例如在电商应用、价格比较工具、数据分析平台等场景中展示商品信息、进行数据统计分析等。从数据层面来看,该接口可返回的信息涵盖多个方面。商品基本信息包括商品名称、商品编号、所属品牌、商品分类等;价格信息有当前售价、历史价格走势、促销
- 三天斩获10万用户。零基础用ChatGPT+Flutter开发AI算命小程序,流量变现全流程
众口烁金
chatgptflutter人工智能小程序plotly
---##三天斩获10万用户!零基础用ChatGPT+Flutter开发AI算命小程序,流量变现全流程大揭秘!(附完整源码)**导语**:大学生靠“AI面相分析”小程序日入5万?2023最野路子曝光!无需算法基础,手把手教你用ChatGPT生成风水命理模型,Flutter快速开发上线,抓住玄学经济红利!(文末送开光版源码+裂变增长脚本)**关键词**:AI算命、ChatGPT变现、Flutter开
- 支持 40+ 插件,Spring AI Alibaba 简化智能体私有数据集成
阿里云云原生
人工智能spring数据挖掘
作者:张震霆&何裕墙,SpringAIAlibabaContributor在AI智能体(AIAgent)开发的过程中,RAG(Retrieval-AugmentedGeneration)和ToolCalling已经成为两种至关重要的模式。RAG通过结合检索技术和生成模型的强大能力,使智能体能够实时从外部数据源获取信息,并在生成过程中增强其知识深度和推理能力。通过这种方式,智能体不仅能依赖于模型的预
- 云原生边缘计算:分布式智能的最后一公里革命
桂月二二
云原生边缘计算分布式
引言:从集中式云到边缘计算的范式演进阿里云ENS覆盖3000边缘节点,腾讯云ECM支持5ms内就近接入,特斯拉每辆车部署轻量K8s管理AI模型。KubeEdge管理百万边缘设备,AWSWavelength实现5G边缘数据处理延迟0{data:=es.diskQueue.Pop()ifcloud.IsConnected{cloud.Upload(data)}else{es.diskQueue.Ret
- Deepsearch 、Rag 、RraphRag
kse_music
混杂raggraphragdeepsearch
文章目录前言一、Ai-Search1.DeepSearch2.RAG(Retrieval-AugmentedGeneration)3.GraphRAG(Graph-basedRetrieval-AugmentedGeneration)二、选择指南三、结合应用总结前言DeepSearch、RAG(Retrieval-AugmentedGeneration)和GraphRAG这三种技术在智能检索、信息
- 服务器搭建全流程
yzx991013
服务器运维
服务器搭建全流程指南(2025年最新版)一、硬件与服务器选择硬件类型云服务器:推荐阿里云、腾讯云等平台,支持按需付费,适合个人及中小型项目物理服务器:戴尔PowerEdge、惠普ProLiant等企业级设备,适合高并发或大存储需求个人电脑/NAS:通过内网穿透工具(如神卓互联)实现公网访问,适合测试或小型文件服务硬件配置建议CPU:至少4核(如Inteli5或AMDR
- RAG(检索增强生成)系统实践与调优
python_知世
android金融自然语言处理大模型技术人工智能RAG大模型
在人工智能领域,检索增强生成(RetrievalAugmentedGeneration,RAG)是一种结合信息检索和生成式人工智能的技术,它通过从外部数据源中检索相关信息,来辅助大语言模型(LargeLanguageModel,LLM)生成更为准确、上下文相关的答案。1什么是RAG检索增强生成(RetrievalAugmentedGeneration,RAG)是一种结合信息检索和生成式人工智能的技
- Ubuntu20.04搭建Hyperledger Fabric2.4
WangF1rst
基础环境dockergolangraspberrypiarmfabric
基础环境操作系统:ubuntu-20.04.4安装Gitaptinstallgit安装curlaptinstallcurl安装dockeraptinstalldocker.ioapt-yinstalldocker-compose检测docker是否安装成功docker--version启动docker并设置docker为开机自启动systemctlstartdockersystemctlenabl
- CMOS 图像传感器市场趋势和新兴应用
沧海一升
CMOS图像传感器成像CISsensor图像传感器image
2024年底,Yole举办了一场网络研讨会,有关CMOS图像传感器市场的最新趋势和新兴应用,本次网络研讨会由EdgeAI+Vision联盟联合举办,讨论了CIS供应商如何专注于增强传感器功能,以及如何将其产品组合转向更高潜在价值的市场。除此外还探讨了神经形态、光学超表面、短波红外和多光谱成像等新兴传感模式将如何在未来补充CMOS图像传感器,在某些情况下甚至取代CMOS图像传感器。可以在下面链接看到
- 桂链:区块链模型介绍
桂云网络OSG
区块链
桂链区块链基于Hyperledger开发,本文转自HyperledgerFabric。HyperledgerFabric模型¶本节概述了HyperledgerFabric的关键设计特性,这些特性确保其成为全方位、可定制的企业级区块链解决方案:资产—资产定义使得几乎任何具有货币价值的东西都可以在网络上交换,包括从食品到古董汽车再到货币期货。链码—链码执行与交易排序的分离,限制了跨节点类型所需的信任和
- selenium鼠标操作大全
Guff_hys
python开发语言
selenium鼠标操作大全#导包fromseleniumimportwebdriverfromtimeimportsleep#获取浏览器驱动对象driver=webdriver.Edge()#打开urlurl=r"C:\Users\黄永生\Desktop\软件测试\P2C电子市场\web自动化_day01_课件+笔记+资料+代码\02_其他资料\注册A.html"driver.get(url)"
- AI学习指南RAG篇(7)-RAG知识库构建
俞兆鹏
AI学习指南ai
文章目录一、引言二、知识库构建过程1.数据收集1.1数据来源1.2示例代码2.预处理2.1数据清洗2.2示例代码2.3数据格式转换2.4示例代码3.分块3.1分块的目的3.2分块策略3.3示例代码4.向量化4.1向量化的目的4.2示例代码4.3向量数据库4.4示例代码三、总结一、引言在RAG(Retrieval-AugmentedGeneration,检索增强生成)系统中,知识库的构建是至关重要的
- 计算机视觉图像处理面试笔试题整理——边缘检测
fpga和matlab
图像处理计算机视觉图像面试笔试计算机视觉面试笔试
目录1.边缘检测综述2.Roberts算子3.Prewitt算子4.Sobel算子5.Laplace算子6.Canny1.边缘检测综述边缘检测是图像处理和计算机视觉中,尤其是特征提取中的一个研究领域。图像边缘检测大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。图像边缘是图像最基本的特征,所谓**边缘**(Edge)是指图像局部特性的不连续性。灰度或结构等信息的突变处
- 深入解析模型蒸馏(Knowledge Distillation):原理、方法与优化策略
赵大仁
AI大语言模型人工智能人工智能深度学习神经网络机器学习自然语言处理
深入解析模型蒸馏(KnowledgeDistillation):原理、方法与优化策略1.引言随着深度学习模型规模的不断增长,训练和部署大模型的计算成本也越来越高。模型蒸馏(KnowledgeDistillation,KD)是一种广泛使用的模型压缩与优化技术,通过让一个小模型(StudentModel)学习大模型(TeacherModel)的知识,使其能够在保持高准确度的同时降低计算复杂度,从而提升
- 桂链:什么叫区块链网络?
桂云网络OSG
桂链区块链区块链网络服务器
本文由桂云网络转自HyperledgerFabric,桂链基于HyperledgerFabric开发,是桂云网络公司旗下的区块链产品。区块链网络¶这个话题会在概念层面上描述HyperledgerFabric是如何让组织间以区块链网络的形式进行合作的。如果你是一个架构师,管理员或者开发者,你可以通过这个话题来深入理解在HyperledgerFabric区块链网络中的主要结构和处理组件。这个话题会使用
- 12.【线性代数】——图和网络
sda42342342423
math线性代数
十二图和网络(线性代数的应用)图graph={nodes,edges}graph=\{nodes,edges\}graph={nodes,edges}1.关联矩阵2.AAA矩阵的零空间,求解Ax=0Ax=0Ax=0电势3.ATA^TAT矩阵的零空间,电流总结电流图结论图graph={nodes,edges}graph=\{nodes,edges\}graph={nodes,edges}13245n
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不