- RabbitMQ精讲5:深入RabbitMQ高级特性-限流、ACK、TTL和死信队列
琦彦
RabbitMQ:可靠安全性能高rabbitmq限流ACKTTL死信队列
目录前言1.自定义消费者1.1消费端自定义监听1.2代码演示1.2.1生产者1.2.2消费者1.2.3自定义类:MyConsumer2.消费端限流2.1什么是消费端的限流?为什么不在生产端进行限流呢?BasicQos(uintprfetchSize,ushortprefetchCount,boolglobal);2.2代码演示2.2.1生产者2.2.2消费者2.2.3自定义类:MyConsumer
- 2025美赛数学建模B题思路+模型+代码(1.24更新),备战2025美赛
灿灿数模分号
数学建模
2025美赛数学建模B题思路+模型+代码(1.24更新),备战2025美赛,见文末名片一、比赛准备1、心态准备(1)重视美赛a、含金量:美赛有O奖(特等奖),加分上限与国赛一等奖相同;美赛有的学校认定为A类,比如清华大学、武汉大学等,有的认定为B类;b、实力:对大部分的大一大二的同学来说,专业知识积累还不够,手里的项目还不成熟,参加创新创业类的比赛实力有限,拿奖比较困难,因此,像美赛、国赛等学科类
- 【大模型】ChatGPT 打造个人专属GPTs助手使用详解
小码农叔叔
AI大模型实战与应用ChatGPTGPTsChatGPTGPTs配置ChatGPTGPTs使用ChatGPTGPTs总结GPTs使用详解GPTs配置详解GPTs
目录一、前言二、GPTs介绍2.1GPTs是什么2.2GPTs工作原理2.3GPTs主要功能2.4GPTs应用场景2.5GPTs优缺点三、GPTs创建个人专属应用操作过程3.1内置GPTs模板3.1.1内置GPTs使用过程3.2手动配置方式创建GPTs3.2.1创建过程3.3使用对话方式创建GPTs3.3.1操作过程3.4GPTs上传文档3.5GPTs操作补充3.6高频常用内置GPTs推荐四、写在
- 【大模型】百度千帆大模型对接LangChain使用详解
小码农叔叔
AI大模型实战与应用LangChain使用详解LangChain对接千帆LangChain组件使用详解LangChain使用LangChain组件使用LangChain组件LangChain
目录一、前言二、LangChain架构与核心组件2.1LangChain核心架构2.2LangChain核心组件三、环境准备3.1前置准备3.1.1创建应用并获取apikey3.1.2开通付费功能3.2获取LangChain文档3.3安装LangChain依赖包四、百度千帆大模型对接LangChain4.1LLMS大语言模型能力使用4.1.1代码操作演示4.2Chatmodels能力使用4.2.1
- 【MYSQL学习】MySQL内置函数:窗口函数的5大绝招你GET到了吗?
墨瑾轩
MySql入门~精通mysql学习android
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣MySQL内置函数:窗口函数的5大绝招你GET到了吗?引言❓在数据分析和报表生成中,窗口函数是一个非常强大的工具,它可以让你在同一个查询中进行复杂的聚合和排序操作。但你真的了解窗口函数吗?今天,我们就来一场深入浅出的探索之旅,带你了解窗口函数的5大绝招,让你在
- 【AI大模型】Prompt 提示词工程使用详解
小码农叔叔
AI大模型实战与应用Prompt提示词工程使用Prompt提示词工程Prompt提示词Prompt使用详解Promptprompt使用总结Prompt使用总结
目录一、前言二、Prompt提示词工程介绍2.1Prompt提示词工程是什么2.1.1Prompt构成要素2.2Prompt提示词工程有什么作用2.2.1Prompt提示词工程使用场景2.3为什么要学习Prompt提示词工程三、Prompt提示词工程元素构成与操作实践3.1前置准备3.2Prompt基本结构介绍与使用3.2.1明确指令3.2.2提供必要的原始内容3.2.3提供背景参考四、Promp
- 【教程】Ollama 部署 MindSpore 训练的大模型
Hsiayukoo
llamapython
gguf-mindspore本项目(gguf-mindspore)帮助用户快速的将MindSpore生成的大模型的ckpt文件,转换为Ollama可以加载的GGUF格式文件,主要思路是针对已有的如Huggingface上的对应模型的GGUF文件,利用MindSpore生成的ckpt文件,替换掉GGUF文件中的张量信息部分,生成自己的GGUF文件。依赖gguf==0.6.0mindsporenump
- 清华和哈工大把大模型量化做到了1比特,把世界顶尖多模态大模型开源大模型量化个人电脑运行!机器人领域首个开源视觉-语言操作大模型,激发开源VLMs更大潜能,视 Mamba速度提升2.8倍,内存能省87%
代码讲故事
机器人智慧之心Mamba机器人量化大模型开源视觉VLMs
清华和哈工大把大模型量化做到了1比特,把世界顶尖多模态大模型开源大模型量化个人电脑运行!机器人领域首个开源视觉-语言操作大模型,激发开源VLMs更大潜能,视Mamba速度提升2.8倍,内存能省87%。清华和哈工大把大模型量化做到了1比特。在追求更高效的机器学习模型部署时,模型量化技术应运而生,它通过降低权重矩阵的位宽来显著减少大型语言模型的存储和计算需求。我们一般的双精度浮点型double是64位
- 如何创建自定义聊天模型类
srudfktuffk
人工智能python
在当今的AI开发中,聊天模型成为了一个非常重要的领域。本文将介绍如何使用LangChain的抽象来创建一个自定义的聊天模型,旨在帮助你轻松地将自己的语言模型集成到现有的LangChain程序中。通过包装自定义的LLM(大语言模型)到标准的BaseChatModel接口中,你不仅能与现有程序无缝集成,而且还能自动享受LangChain的各种优化,包括批处理、异步支持和流式API等。技术背景介绍聊天模
- 大模型的部署方法三:使用Xinference部署
大模型微调部署
人工智能AI大模型大模型AI深度学习大模型部署
Xinference是一个分布式推理框架,它支持一键部署各种模型,包括大型语言模型(LLMs)。使用Xinference部署AI大模型的步骤:一、安装Xinference1)环境准备:确保您的系统上安装了Python3.9或以上版本。安装Docker(如果选择使用Docker部署)。2)安装Xinference:通过Python的包管理工具pip安装Xinference:pipinstall"xi
- Zerox:AI驱动的万能OCR工具,精准识别复杂布局并输出Markdown格式,支持PDF、DOCX、图片等多种文件格式
蚝油菜花
每日AI项目与应用实例人工智能ocrpdf人工智能开源
❤️如果你也关注AI的发展现状,且对AI应用开发非常感兴趣,我会每日分享大模型与AI领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!微信公众号|搜一搜:蚝油菜花快速阅读功能:支持零样本OCR识别,兼容PDF、DOCX、图片等多种格式文件。技术:基于GPT-4o-mini模型,能够处理复杂布局文档,输出Markdown格式结果。应用:提供API接口,便于集成到
- 基于大数据的商品推荐系统的设计与实现
JAVA编码选手
个人作品案例展示分享大数据springbootmavenvue.js后端javascript
摘要在当今互联网时代,随着电子商务的快速发展,各行各业都面临着海量数据的挑战和机遇,电子商务极大地改变了商业运作的方式,为消费者和企业带来了前所未有的便利和机会。该毕业设计以京东商品数据为来源,设计与实现基于大数据的电商商品推荐系统。通过对电商商品数据进行深度挖掘,可以发现消费趋势、产品热门度、价格以及地区差异等信息,为市场营销和产品策略提供重要参考。利用Java语言及SpringBoot框架、M
- 欧派家居被下调盈利预测:销售费用创新高,零售经销渠道压力不小
港湾商业观察
用户运营
《港湾商业观察》王璐在房地产等多重因素冲击之下,上半年不少家居上市公司交出的业绩答卷都不尽理想,这其中也包括了消费者所熟知的“家居一哥”欧派家居(603833.SH)。从2023年下半年开始,胡歌的代言令全民对欧派家居印象更加深刻。上个月的中秋节时,欧派携手胡歌发布的2分钟10秒短片《明月如家》,也引发诸多关注。然而,种种措施似乎依然未能止住双位数下滑的业绩走势,欧派家居下半年可谓挑战重重。零售经
- LLama 架构一览
Debroon
llama
LLama架构一览预训练Transformer架构RMSNorm归一化:为什么大模型llama选RMSNorm,而不是其他?SwiGLU激活函数:为什么大模型llama选SwiGLU激活函数,而不是其他?RoPE旋转位置编码:为什么大模型llama选RoPE旋转位置编码,而不是其他?GQA分组查询注意力:为什么大模型llama选GQA分组查询注意力,而不是其他?KVCache推理加速llama、l
- 程序员如何培养技术领导力?
借雨醉东风
管理及面试心得职场和发展
关注我,持续分享逻辑思维&管理思维&面试题;可提供大厂面试辅导、及定制化求职/在职/管理/架构辅导;推荐专栏《10天学会使用asp.net编程AI大模型》,目前已完成所有内容。一顿烧烤不到的费用,让人能紧跟时代的浪潮。从普通网站,到公众号、小程序,再到AI大模型网站。干货满满。学成后可接项目赚外快,绝对划算。不仅学会如何编程,还将学会如何将AI技术应用到实际问题中,为您的职业生涯增添一笔宝贵的财富
- 寒假集训1.21
学长学姐我该怎么办
算法
问题A:TYVJ1025单数?双数?内存限制:128MB时间限制:0.000S评测方式:文本比较命题人:外部导入提交:521解决:230返回比赛提交提交记录侧边提交题目描述Bessie那惨无人道的二年级老师搞了一个有N(1=n/2:print(key)问题N:寻找第K大的数内存限制:20MB时间限制:1.000S评测方式:文本比较命题人:liuyong提交:4033解决:1744返回比赛提交提交记
- 深入理解GPT底层原理--从n-gram到RNN到LSTM/GRU到Transformer/GPT的进化
网络安全研发随想
rnngptlstm
从简单的RNN到复杂的LSTM/GRU,再到引入注意力机制,研究者们一直在努力解决序列建模的核心问题。每一步的进展都为下一步的突破奠定了基础,最终孕育出了革命性的Transformer架构和GPT大模型。1.从n-gram到循环神经网络(RNN)的诞生1.1N-gram模型在深度学习兴起之前,处理序列数据主要依靠统计方法,如n-gram模型。N-gram是一种基于统计的语言模型,它的核心思想是:一
- Java工程结构:服务器规约(JVM 碰到 OOM 场景时输出 dump 信息、设置tomcat的 JVM 的内存参数、了解服务平均耗时)
iOS逆向
Java开发的深入浅出java服务器开发语言
文章目录I调用远程操作必须有超时设置。II推荐了解每个服务大致的平均耗时JVM的Xms和Xmx设置一样大小的内存容量让JVM碰到OOM场景时输出dump信息调大服务器所支持的最大文件句柄数(FileDescriptor,简写为fd)高并发服务器建议调小TCP协议的time_wait超时时间。III设置tomcat的JVM的内存参数查找Tomcat位置:快速定位服务状态和部署位置具体配置步骤查看JV
- 合并两个img栅格影像——arcgis
yngsqq
arcgisGISarcgis
合并两个img格式栅格数据时,有时会被边缘的黑框覆盖,采用以下方法可解决此问题:因黑色背景的rgb值为0,0,0,在两个影像重合部位的像素选max(最大值)可避免提取黑色背景。(因有影像的像素点rgb值肯定比0大)。输出位置选指定文件夹,数据集名称及对应的后缀可自己设置。
- Grape-RAG
disgare
AIai
Grape-RAG传统RAG的局限性图的优点用知识图谱来呈现数据关系GraphRAG传统RAG的局限性经典的RAG架构以向量数据库(VectorDB)为核心来检索语义相似性上下文,让大语言模型(LLM)不需要重新训练就能够获取最新的知识,其工作流如下图所示:这一架构目前广泛应用于各类AI业务场景中,例如问答机器人、智能客服、私域知识库检索等等。虽然RAG通过知识增强一定程度上缓解了LLM幻觉问题,
- 字符串的大小比较
小白—人工智能
python算法
一、题目两个字符串a、b可以比较大小,比较规则是按各个对应字符的Unicode(Unicode)编码,编码大的一个为大。比较a[0]与b[0],如果a[0]>b[0]则a>b,如果a[0]b[1]则a>b,如果a[1]len(b)则a>b:如果len(a)b返回1,如果ank=n#先比较值的大小foriinrange(k):#判断数组值,实际0到k-1,但是数组从0开始,所以包括全部;k=5,i=
- 细嗦Transformer(三):准备训练,讲解及代码实现优化器、学习率调整策略、正则化和KL散度损失
Ace_bb
算法LLMtransformer
文章目录关注我:细嗦大模型批处理对象/BatchesandMasking训练循环主函数/TrainingLoop优化器/Optimizer学习率调整策略/Learningrateadjustmentstrategy样例测试正则化/RegularizationLabelsmoothing标签平滑KL散度损失样例测试Github完整代码----求求了给个star和关注吧参考资料求求了,给个star和关
- Kafka消息轨迹方案设计与实现
小马不敲代码
大数据kafka
在处理过的几个千万级TPS的Kafka集群中,消息追踪始终是一个既重要又棘手的问题。一条消息从Producer发出后,经过复杂的处理流程,最终被Consumer消费,中间可能会经历重试、重平衡、多副本复制等多个环节。如果没有完善的追踪机制,一旦出现问题将很难定位。本文将详细介绍Kafka消息轨迹的实现方案。1、Kafka消息处理模型在设计追踪方案前,我们需要先理解Kafka的消息处理模型。一条消息
- 鸿蒙 er 紧急集合!贡献你的鸿蒙开发工具,赢取大赶集好礼
在科技浪潮中,鸿蒙生态正以破竹之势迅猛前行,蓬勃发展。鸿蒙开发工具广场社区作为鸿蒙开发实用工具的汇聚高地,一直致力于为开发者们打造一个资源丰富、高效便捷的交流平台。2025年开春之际,Gitcode诚邀广大开发者参与“鸿蒙开发工具大赶集”活动,将平时鸿蒙开发过程中的经验工具化,助力更多开发者高效地开发鸿蒙应用。欢迎扫描下方海报中的二维码加入此次活动,一同为鸿蒙生态的繁荣添砖加瓦.
- 游戏陪玩源码盈利点,基于Vue+thinkPhP6前后端分离的陪玩小程序管理系统
mysqlvue.jsphp
游戏陪玩源码还能通过哪些方式获得收益呢?1、通过轮播图广告、首页广告位、开屏广告等多种方式获得平台游戏活动广告收益。2、通过普通礼物、豪华礼物等多种打赏方式获得礼物抽成收益。3、通过不同的聊天室类型、派单聊天等方式增加主播的曝光量,刺激用户的消费欲望获得收益。4、通过用户之间相互邀请赚钱,平台抽取相应手续费的方式获得收益。源码获取地址!!!请点击优化陪玩平台源码性能性能是用户留存的关键,如果陪玩平
- 分析-MQ消息队列中间件-在IM即时通讯系统的用途
酱油瓶啤酒杯
中间件分布式队列kafka
MQ消息队列在IM即时通讯的用途1)用户聊天消息的离线存储环节:因为IM消息的发送属于高吞吐场景,直接操作DB可能会让DB崩溃,所有离线消息在落地入库前,可以先扔到MQ消息队列中,再由单独部署的消费者来有节奏地存储到DB中;2)用户的行为数据收集环节:因为用户的聊天消息和指令等,可以用于大数据分析,而且基于国家监管要求也是必须要存储一段时间的,所以此类数据的收集同样可以用于MQ消息队列,再由单独部
- 降维算法:主成分分析
一个人在码代码的章鱼
数学建模机器学习概率论
主成分分析一种常用的数据分析技术,主要用于数据降维,在众多领域如统计学、机器学习、信号处理等都有广泛应用。主成分分析是一种通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量(即主成分)的方法。这些主成分按照方差从大到小排列,方差越大,包含的原始数据信息越多。通常会选取前几个方差较大的主成分,以达到在尽量保留原始数据信息的前提下降低数据维度的目的。它通过将多个指标转换为少数几个主成分,
- 2024年最全(一)大数据---Hadoop整体介绍(架构层)----(组件,并发知识体系大全
2401_84586689
程序员大数据hadoop架构
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。需要这份系统化资料的朋友,可以戳这里获取一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!Hadoop方案一、大数据介绍============
- 2025毕设springboot MVC框架下的精品课程管理平台论文+源码
zhihao501
课程设计springbootmvc
本系统(程序+源码)带文档lw万字以上文末可获取一份本项目的java源码和数据库参考。系统程序文件列表开题报告内容研究背景在教育信息化的大背景下,精品课程管理平台的构建成为提升教学质量和效率的重要手段。当前,许多高校和教育机构仍然采用传统的课程管理方式,不仅效率低下,还难以满足学生日益增长的个性化学习需求。SpringBootMVC框架作为一种轻量级、高效的JavaWeb开发框架,以其简洁的设计理
- 【大模型】Spring AI对接ChatGpt使用详解
小码农叔叔
微服务治理与实战springboot入门到精通springspringaiAspringAispringai对接gptspringai整合gptspringai使用详解springai使用
目录一、前言二、springai介绍2.1什么是SpringAI2.2SpringAI特点2.3SpringAI为开发带来的便利2.4SpringAI应用领域2.4.1聊天模型2.4.2文本到图像模型2.4.3音频转文本2.4.4嵌入大模型使用2.4.5矢量数据库支持2.4.6用于数据工程ETL框架三、SpringAI对接ChatGPT3.1前置准备3.2添加依赖3.3接入流程3.3.1配置文件3
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite