图论排序---拓扑排序

定义

对于有向无权无环图,进行拓扑排序

实现方式

  • Kahn算法
  • 基于DFS的拓扑排序算法

Kahn算法

优化前时间复杂度O(\(n^{2}\))

排序的过程

1.对于DAG,先输出没有前驱的点
2.把与前驱相关的边删除
3.继续输出没有前驱的点
4.重复前者,直到DAG为空或者没有前驱

如果我们有如下的一个有向无环图,我们需要对这个图的顶点进行拓扑排序,过程如下:
图论排序---拓扑排序_第1张图片
首先,我们发现V6和v1是没有前驱的,所以我们就随机选去一个输出,我们先输出V6,删除和V6有关的边,得到如下图结果:
图论排序---拓扑排序_第2张图片
然后,我们继续寻找没有前驱的顶点,发现V1没有前驱,所以输出V1,删除和V1有关的边,得到下图的结果:
图论排序---拓扑排序_第3张图片
然后,我们又发现V4和V3都是没有前驱的,那么我们就随机选取一个顶点输出(具体看你实现的算法和图存储结构),我们输出V4,得到如下图结果:
图论排序---拓扑排序_第4张图片
然后,我们输出没有前驱的顶点V3,得到如下结果:
图论排序---拓扑排序_第5张图片
然后,我们分别输出V5和V2,最后全部顶点输出完成,该图的一个拓扑序列为:
v6–>v1—->v4—>v3—>v5—>v2

应用

给出n个点,m个关系
再给出u,v,表示u比v厉害
然后进行排序

邻接矩阵版Kahn算法的拓扑排序

复杂度O(\(n^{2}\))
传送门
裸拓扑排序

#include 
#include 
#include 
#include 
using namespace std;
const int N=510;
std::vector v;
int g[N][N];
int degree[N];
int n;
void init(){
    memset(g,0,sizeof(g));
    v.clear();
    memset(degree,0,sizeof(degree));
}
void topological_sort(){
    for(int i=1;i<=n;i++){
        int k;//假设无环
        for(int j=1;j<=n;j++){
            if(degree[j]==0){//找到一个入度为0的点
                degree[j]--;//标记为-1,防止下一次循环的时候还会访问到这个点
                k=j;
                v.push_back(j);
                break;
            }
        }
        for(int j=1;j<=n;j++){//从点k出发到达的点都给取消掉,把j的入度减1
            if(g[k][j]==1)degree[j]--;
        }
    }
}
void print(){
    printf("%d",v[0]);
    for(int i=1;i

邻接表版Kahn算法拓扑排序

vector+队列优化

时间复杂度O(\(n^{2}\))

#include 
#include 
#include 
#include 
#include 
using namespace std;
const int N=505;
std::vector g[N];
std::vector v;
int degree[N];
int n;
void init(){
    memset(degree,0,sizeof(degree));
    v.clear();
    for(int i=0;i<=n;i++){
        g[i].clear();
    }
}
void kahn(){
    int k=0;
    queueq;
    for(int i=1;i<=n;i++){//自己撸的算法里直接把邻接的那几个结点拿来用了
        if(!degree[i])q.push(i);
    }
    while(!q.empty()){
        int k=q.front();q.pop();
        v.push_back(k);
        for(int j=0;j

结构体

优先队列优化---序列约束

假如要求序列小的先输出,前面的邻接矩阵版kahn算法也可以实现
复杂度为O(V+E)

#include 
#include 
#include 
#include 
#include 
using namespace std;
const int N=505;
std::vector g[N];
std::vector v;
int degree[N];
int n;
void init(){
    memset(degree,0,sizeof(degree));
    v.clear();
    for(int i=0;i<=n;i++){
        g[i].clear();
    }
}
void kahn(){
    int k=0;
    priority_queue,greater >q;//表示从小到大,dijkstra算法那里存入的是结构体,而且在结构体里重载运算符了,所以不需要加这些,优先队列默认从大到小,输出第一个是top()
    for(int i=1;i<=n;i++){//自己撸的算法里直接把邻接的那几个结点拿来用了
        if(!degree[i])q.push(i);
    }
    while(!q.empty()){
        int k=q.top();q.pop();
        v.push_back(k);
        for(int j=0;j

基于dfs的拓扑排序

半成品

#include 
#include 
#include 
#include 
using namespace std;
const int N=505;
int n,m;
std::vector v;
void init(){
    memset();
    v.clear();
}
void print(){
    printf("%d",v[0]);
    for(int i=1;i

你可能感兴趣的:(图论排序---拓扑排序)