1、最小生成树(MST树)
针对连通图;
(1)、现实意义:在n个城市之间建立通信网络,连通n个城市,只需要n-1条线路;
但是n个城市之间共有 n*(n-1)/2条路线,如何选择n-1条,使我们花费成本最小。
(2)、相同的一个图形结构,有可能产生出不同形状的生成树,但是我们要找的是不同形状生成树里面耗费最小的一棵树;
(3)、研究的问题:怎样从生成树里面找到花费代价最小的一颗,花费最小,成本最低;耗费代价最小的生成树我们就称之为:最小生成树(MST树)。
(4)、最小生成树是不能有环形的;通过不同的方法,最终所找到的最小生成树是相同的(在权值相同时,有可能不一样,但是权值最小是唯一的,肯定的)。
2、Kruskal算法思想
思想:每次找权值最小的边,与顶点关系不大(不关注顶点);
从边的游离角度出发,每次都要找权值路径最小的边,(特别注意看所选的边是否购成回路)
模型分析:
3、Kruskal算法实现
这里找最小代价cost时,采用的是数组(调用系统快排),当然用堆也可以。
均由C++代码实现(用的是邻接矩阵):
typedef struct MstEdge{ //最小生成树的边(弄成一个结构体) int x; //row int y; //col int cost; }MstEdge; int cmp(const void *a, const void *b){ //快排比较的方法 return (*(MstEdge*)a).cost - (*(MstEdge*)b).cost; } bool isSame(int *father, int i, int j){ //判断是否为回路,就是有相同的父节点 while(father[i] != i){ i = father[i]; } while(father[j] != j){ j = father[j]; } return i == j; } void markSame(int *father, int i, int j){ //连通之后,标记为有相同的父节点 while(father[i] != i){ i = father[i]; } while(father[j] != j){ j = father[j]; } father[j] = i; } templatevoid GraphMtx ::MinSpanTree_Kruskal(){ int n = Graph ::getCurVertex(); //由于要用到父类的保护数据或方法,有模板的存在,必须加上作用域限定符; MstEdge *edge1 = new MstEdge[n*(n-1)/2]; //最小生成树的数组 int k = 0; for(int i = 0; i < n; i++){ for(int j = i+1; j < n; j++){ if(edge[i][j] != MAX_COST){ edge1[k].x = i; edge1[k].y = j; edge1[k].cost = edge[i][j]; k++; } } } qsort(edge1, k, sizeof(MstEdge), cmp); //调用系统的快排; int *father = new int[n]; //弄一个父节点 Type v1, v2; for(i = 0; i < n; i++){ father[i] = i; //自己的父就是自己顶点的下标 } for(i = 0; i < n; i++){ if(!isSame(father, edge1[i].x, edge1[i].y)){ //父节点不相同 v1 = getValue(edge1[i].x); v2 = getValue(edge1[i].y); printf("%c-->%c : %d\n", v1, v2, edge1[i].cost); //找到了最小边和cost markSame(father, edge1[i].x, edge1[i].y); //标记为相同父节点; } } }
4、完整代码、测试代码、测试结果
(1)、完整代码
#ifndef _GRAPH_H_ #define _GRAPH_H_ #include#include using namespace std; #define VERTEX_DEFAULT_SIZE 10 #define MAX_COST 0x7FFFFFFF template class Graph{ public: bool isEmpty()const{ return curVertices == 0; } bool isFull()const{ if(curVertices >= maxVertices || curEdges >= curVertices*(curVertices-1)/2) return true; //图满有2种情况:(1)、当前顶点数超过了最大顶点数,存放顶点的空间已满 return false; //(2)、当前顶点数并没有满,但是当前顶点所能达到的边数已满 } int getCurVertex()const{ return curVertices; } int getCurEdge()const{ return curEdges; } public: virtual bool insertVertex(const Type &v) = 0; //插入顶点 virtual bool insertEdge(const Type &v1, const Type &v2, E cost) = 0; //插入边 virtual bool removeVertex(const Type &v) = 0; //删除顶点 virtual bool removeEdge(const Type &v1, const Type &v2) = 0; //删除边 virtual int getFirstNeighbor(const Type &v) = 0; //得到第一个相邻顶点 virtual int getNextNeighbor(const Type &v, const Type &w) = 0; //得到下一个相邻顶点 public: virtual int getVertexIndex(const Type &v)const = 0; //得到顶点下标 virtual void showGraph()const = 0; //显示图 virtual Type getValue(int index)const = 0; public: virtual void DFS(const Type &v) = 0; virtual void BFS(const Type &v) = 0; protected: int maxVertices; //最大顶点数 int curVertices; //当前顶点数 int curEdges; //当前边数 }; template class GraphMtx : public Graph { //邻接矩阵继承父类矩阵 #define maxVertices Graph ::maxVertices //因为是模板,所以用父类的数据或方法都得加上作用域限定符 #define curVertices Graph ::curVertices #define curEdges Graph ::curEdges public: GraphMtx(int vertexSize = VERTEX_DEFAULT_SIZE){ //初始化邻接矩阵 maxVertices = vertexSize > VERTEX_DEFAULT_SIZE ? vertexSize : VERTEX_DEFAULT_SIZE; vertexList = new Type[maxVertices]; //申请顶点空间 for(int i = 0; i < maxVertices; i++){ //都初始化为0 vertexList[i] = 0; } edge = new int*[maxVertices]; //申请边的行 for(i = 0; i < maxVertices; i++){ //申请列空间 edge[i] = new int[maxVertices]; } for(i = 0; i < maxVertices; i++){ //赋初值为0 for(int j = 0; j < maxVertices; j++){ if(i != j){ edge[i][j] = MAX_COST; //初始化时都赋为到其它边要花的代价为无穷大。 }else{ edge[i][j] = 0; //初始化时自己到自己认为花费为0 } } } curVertices = curEdges = 0; //当前顶点和当前边数 } GraphMtx(Type (*mt)[4], int sz){ //通过已有矩阵的初始化 int e = 0; //统计边数 maxVertices = sz > VERTEX_DEFAULT_SIZE ? sz : VERTEX_DEFAULT_SIZE; vertexList = new Type[maxVertices]; //申请顶点空间 for(int i = 0; i < maxVertices; i++){ //都初始化为0 vertexList[i] = 0; } edge = new int*[maxVertices]; //申请边的行 for(i = 0; i < maxVertices; i++){ //申请列空间 edge[i] = new Type[maxVertices]; } for(i = 0; i < maxVertices; i++){ //赋初值为矩阵当中的值 for(int j = 0; j < maxVertices; j++){ edge[i][j] = mt[i][j]; if(edge[i][j] != 0){ e++; //统计列的边数 } } } curVertices = sz; curEdges = e/2; } ~GraphMtx(){} public: bool insertVertex(const Type &v){ if(curVertices >= maxVertices){ return false; } vertexList[curVertices++] = v; return true; } bool insertEdge(const Type &v1, const Type &v2, E cost){ int maxEdges = curVertices*(curVertices-1)/2; if(curEdges >= maxEdges){ return false; } int v = getVertexIndex(v1); int w = getVertexIndex(v2); if(v==-1 || w==-1){ cout<<"edge no exit"< ::getCurVertex(); bool *visit = new bool[n]; for(int i = 0; i < n; i++){ visit[i] = false; } DFS(v, visit); delete []visit; } void BFS(const Type &v){ int n = Graph ::getCurVertex(); bool *visit = new bool[n]; for(int i = 0; i < n; i++){ visit[i] = false; } cout< "; int index = getVertexIndex(v); visit[index] = true; queue q; //队列中存放的是顶点下标; q.push(index); int w; while(!q.empty()){ index = q.front(); q.pop(); w = getFirstNeighbor(getValue(index)); while(w != -1){ if(!visit[w]){ cout< "; visit[w] = true; q.push(w); } w = getNextNeighbor(getValue(index), getValue(w)); } } delete []visit; } public: void MinSpanTree_Kruskal(); protected: void DFS(const Type &v, bool *visit){ cout< "; int index = getVertexIndex(v); visit[index] = true; int w = getFirstNeighbor(v); while(w != -1){ if(!visit[w]){ DFS(getValue(w), visit); } w = getNextNeighbor(v, getValue(w)); } } private: Type *vertexList; //存放顶点的数组 int **edge; //存放边关系的矩阵 }; ////////////////////////////////////////////////////////////////////////////////////////////////////// typedef struct MstEdge{ int x; //row int y; //col int cost; }MstEdge; int cmp(const void *a, const void *b){ return (*(MstEdge*)a).cost - (*(MstEdge*)b).cost; } bool isSame(int *father, int i, int j){ while(father[i] != i){ i = father[i]; } while(father[j] != j){ j = father[j]; } return i == j; } void markSame(int *father, int i, int j){ while(father[i] != i){ i = father[i]; } while(father[j] != j){ j = father[j]; } father[j] = i; } template void GraphMtx ::MinSpanTree_Kruskal(){ int n = Graph ::getCurVertex(); //由于要用到父类的保护数据或方法,有模板的存在,必须加上作用域限定符; MstEdge *edge1 = new MstEdge[n*(n-1)/2]; int k = 0; for(int i = 0; i < n; i++){ for(int j = i+1; j < n; j++){ if(edge[i][j] != MAX_COST){ edge1[k].x = i; edge1[k].y = j; edge1[k].cost = edge[i][j]; k++; } } } qsort(edge1, k, sizeof(MstEdge), cmp); int *father = new int[n]; Type v1, v2; for(i = 0; i < n; i++){ father[i] = i; } for(i = 0; i < n; i++){ if(!isSame(father, edge1[i].x, edge1[i].y)){ v1 = getValue(edge1[i].x); v2 = getValue(edge1[i].y); printf("%c-->%c : %d\n", v1, v2, edge1[i].cost); markSame(father, edge1[i].x, edge1[i].y); } } } #endif
(2)、测试代码
#include"Graph1.h" int main(void){ GraphMtxgm; gm.insertVertex('A'); //0 gm.insertVertex('B'); //1 gm.insertVertex('C'); //2 gm.insertVertex('D'); //3 gm.insertVertex('E'); //4 gm.insertVertex('F'); //5 gm.insertEdge('A','B',6); gm.insertEdge('A','C',1); gm.insertEdge('A','D',5); gm.insertEdge('B','C',5); gm.insertEdge('B','E',3); gm.insertEdge('C','E',6); gm.insertEdge('C','D',5); gm.insertEdge('C','F',4); gm.insertEdge('D','F',2); gm.insertEdge('E','F',6); gm.showGraph(); gm.MinSpanTree_Kruskal(); return 0; }
(3)、测试结果
测试图模型