流水线的数据冲突分为三类:WAR,RAW,WAW
https://wenku.baidu.com/view/e066926d48d7c1c708a14508.html
- WAR: write after read 相关性,又称先读后写相关性。比如下面的指令序列,第一条指令会读取x4,第二条指令会写x4。在流水线中,如果第二条指令比第一条指令先写x4,则第一条指令就会读出错误的值。
add x5, x4,x6
add x4, x3, x2
- WAW: write after write 相关性,又称先写后写相关性。比如下面的指令序列,两条指令都会写x5。在流水线中,如果第二条指令比第一条指令先写x5,就会引起逻辑错误。
add x5, x4,x6
add x5, x3, x2
- RAW:read after write相关性,又称先写后读相关性。比如下面指令序列,如果第二条指令,在第一条指令写x5之前,第二条指令先读x4,就会引起逻辑错误。
add x5, x4,x6
add x4, x5, x2
由于蜂鸟E200系列是按序派遣,按顺序写回的微架构,在指令派遣时候就已经从通用寄存器数组中读取了源操作数。后续执行的指令写回regfile的操作不可能影响到前面指令的读取,所以不可能发生WAR相关性造成的数据冲突。
正在派遣的指令处在流水线的第二级,假设之前派遣的指令是单周期指令,则前序指令肯定已经完成了执行且将结果写回了Regfile。因此正在派遣的指令不可能会发生RAW数据冲突。但是假设之前派遣的指令是多周期指令(长指令),由于指令需要多个周期才能写回结果。因此正在派遣的指令可能会产生前序相关的RAW相关性。
正在派遣的指令处在流水线的第二级,假设之前派遣的指令是单周期指令,则前序指令肯定已经完成了执行且将结果写回了Regfile。因此正在派遣的指令不可能会发生WAW数据冲突。但是假设之前派遣的指令是多周期指令(长指令),由于指令需要多个周期才能写回结果。因此正在派遣的指令可能会产生前序相关的WAW相关性。
为了能检测出长指令的RAW和WAW相关性,蜂鸟E200使用了一个outstanding instruction track fifo(OITF)模块。在流水线的派遣(Dispatch)点,每一次派遣一个长指令,则会在OITF中分配一个表项(Entry),在这个表项中会存储该长指令的结果寄存器索引。在流水线的写回(Write-back)点,每次按顺序写回一个长指令之后,就会将此指令在OITF中的表项移除。
每条指令派遣时,都会将本指令的源操作数和目的操作数寄存器索引和OITF中的各个表项进行比对,从而判断本指令是否与已经被派遣出,且尚未写回的长指令产生RAW和WAW相关性。如果产生相关性,则stall住当前指令的派遣。如果没有RAW和WAW相关性,且该指令为多周期长指令,把该指令写入OITF,如果OITF是full,则仍要stall住管线,等待OITF释放空间后,再写入并派遣。
在writeback模块,会进行长指令写回仲裁,长指令写回regfile后,会释放OITF中相应的表项。
OITF代码如下,如果fifo full,则dis_ready=0, 与dispatch模块握手失败,不会发送新的dispatch进来。如果不为空,会发送新的指令进来进行判断。
`include "e203_defines.v" module e203_exu_oitf ( output dis_ready, input dis_ena, //dispatch a long instruction enable signal input ret_ena, //write back a long instruction enable signal output [`E203_ITAG_WIDTH-1:0] dis_ptr, //write pointer output [`E203_ITAG_WIDTH-1:0] ret_ptr, //read pointer output [`E203_RFIDX_WIDTH-1:0] ret_rdidx, output ret_rdwen, output ret_rdfpu, output [`E203_PC_SIZE-1:0] ret_pc, input disp_i_rs1en, // enable if current dispatch instruction fetch first source operand input disp_i_rs2en, // ... input disp_i_rs3en, // ... input disp_i_rdwen, // enable if current dispatch instruction write back to register input disp_i_rs1fpu, // enable if current dispath instruction need to read float gpr input disp_i_rs2fpu, //... input disp_i_rs3fpu, //... input disp_i_rdfpu, //enable if current dipatch instruction need to write back to float register files. //register index input [`E203_RFIDX_WIDTH-1:0] disp_i_rs1idx, input [`E203_RFIDX_WIDTH-1:0] disp_i_rs2idx, input [`E203_RFIDX_WIDTH-1:0] disp_i_rs3idx, input [`E203_RFIDX_WIDTH-1:0] disp_i_rdidx, input [`E203_PC_SIZE -1:0] disp_i_pc, //pc of current dispatch instruciotn output oitfrd_match_disprs1, //dispatch instruction rs1 is same as any item of result register in oitf output oitfrd_match_disprs2, //... output oitfrd_match_disprs3, //... output oitfrd_match_disprd, //dispatch instruction rd is same as any item of result register in oitf. //if empty, no conflict output oitf_empty, input clk, input rst_n ); wire [`E203_OITF_DEPTH-1:0] vld_set; wire [`E203_OITF_DEPTH-1:0] vld_clr; wire [`E203_OITF_DEPTH-1:0] vld_ena; wire [`E203_OITF_DEPTH-1:0] vld_nxt; wire [`E203_OITF_DEPTH-1:0] vld_r; //if it is valid signal in all item wire [`E203_OITF_DEPTH-1:0] rdwen_r;// if it is write back register in all item wire [`E203_OITF_DEPTH-1:0] rdfpu_r; //result register in all item if are float wire [`E203_RFIDX_WIDTH-1:0] rdidx_r[`E203_OITF_DEPTH-1:0]; //register index in all items // The PC here is to be used at wback stage to track out the // PC of exception of long-pipe instruction wire [`E203_PC_SIZE-1:0] pc_r[`E203_OITF_DEPTH-1:0]; wire alc_ptr_ena = dis_ena; //dispatch a long instruction enable signal, as write pointer enable signal wire ret_ptr_ena = ret_ena; //write back a long instruction enable signal, as read pointer enable signal wire oitf_full ; wire [`E203_ITAG_WIDTH-1:0] alc_ptr_r; //write pointer, long instruction dispatch wire [`E203_ITAG_WIDTH-1:0] ret_ptr_r; //read pointer, long instruction write back generate if(`E203_OITF_DEPTH > 1) begin: depth_gt1//{ //extra mark bit for write full wire alc_ptr_flg_r; wire alc_ptr_flg_nxt = ~alc_ptr_flg_r; wire alc_ptr_flg_ena = (alc_ptr_r == ($unsigned(`E203_OITF_DEPTH-1))) & alc_ptr_ena; sirv_gnrl_dfflr #(1) alc_ptr_flg_dfflrs(alc_ptr_flg_ena, alc_ptr_flg_nxt, alc_ptr_flg_r, clk, rst_n); wire [`E203_ITAG_WIDTH-1:0] alc_ptr_nxt; //if write to fifo depth, write ptr = 0,otherwise write ptr = write ptr + 1 assign alc_ptr_nxt = alc_ptr_flg_ena ? `E203_ITAG_WIDTH'b0 : (alc_ptr_r + 1'b1); sirv_gnrl_dfflr #(`E203_ITAG_WIDTH) alc_ptr_dfflrs(alc_ptr_ena, alc_ptr_nxt, alc_ptr_r, clk, rst_n); //extra mark bit for read empty wire ret_ptr_flg_r; wire ret_ptr_flg_nxt = ~ret_ptr_flg_r; wire ret_ptr_flg_ena = (ret_ptr_r == ($unsigned(`E203_OITF_DEPTH-1))) & ret_ptr_ena; sirv_gnrl_dfflr #(1) ret_ptr_flg_dfflrs(ret_ptr_flg_ena, ret_ptr_flg_nxt, ret_ptr_flg_r, clk, rst_n); wire [`E203_ITAG_WIDTH-1:0] ret_ptr_nxt; //if read to fifo depth, read ptr = 0, otherwise read prt = read prt + 1 assign ret_ptr_nxt = ret_ptr_flg_ena ? `E203_ITAG_WIDTH'b0 : (ret_ptr_r + 1'b1); sirv_gnrl_dfflr #(`E203_ITAG_WIDTH) ret_ptr_dfflrs(ret_ptr_ena, ret_ptr_nxt, ret_ptr_r, clk, rst_n); //empty, full mark assign oitf_empty = (ret_ptr_r == alc_ptr_r) & (ret_ptr_flg_r == alc_ptr_flg_r); assign oitf_full = (ret_ptr_r == alc_ptr_r) & (~(ret_ptr_flg_r == alc_ptr_flg_r)); end//} else begin: depth_eq1//}{ assign alc_ptr_r =1'b0; assign ret_ptr_r =1'b0; assign oitf_empty = ~vld_r[0]; assign oitf_full = vld_r[0]; end//} endgenerate//} assign ret_ptr = ret_ptr_r; assign dis_ptr = alc_ptr_r; //// //// // If the OITF is not full, or it is under retiring, then it is ready to accept new dispatch //// assign dis_ready = (~oitf_full) | ret_ena; // To cut down the loop between ALU write-back valid --> oitf_ret_ena --> oitf_ready ---> dispatch_ready --- > alu_i_valid // we exclude the ret_ena from the ready signal assign dis_ready = (~oitf_full); wire [`E203_OITF_DEPTH-1:0] rd_match_rs1idx; wire [`E203_OITF_DEPTH-1:0] rd_match_rs2idx; wire [`E203_OITF_DEPTH-1:0] rd_match_rs3idx; wire [`E203_OITF_DEPTH-1:0] rd_match_rdidx; genvar i; generate //{ for (i=0; i<`E203_OITF_DEPTH; i=i+1) begin:oitf_entries//{ //every time, assign a item and write pointer same as current i, then //valid set is high assign vld_set[i] = alc_ptr_ena & (alc_ptr_r == i); //every time, assign a item and read pointer same as current i, then //valid clr is high assign vld_clr[i] = ret_ptr_ena & (ret_ptr_r == i); assign vld_ena[i] = vld_set[i] | vld_clr[i]; assign vld_nxt[i] = vld_set[i] | (~vld_clr[i]); sirv_gnrl_dfflr #(1) vld_dfflrs(vld_ena[i], vld_nxt[i], vld_r[i], clk, rst_n); //Payload only set, no need to clear sirv_gnrl_dffl #(`E203_RFIDX_WIDTH) rdidx_dfflrs(vld_set[i], disp_i_rdidx, rdidx_r[i], clk); sirv_gnrl_dffl #(`E203_PC_SIZE ) pc_dfflrs (vld_set[i], disp_i_pc , pc_r[i] , clk); sirv_gnrl_dffl #(1) rdwen_dfflrs(vld_set[i], disp_i_rdwen, rdwen_r[i], clk); sirv_gnrl_dffl #(1) rdfpu_dfflrs(vld_set[i], disp_i_rdfpu, rdfpu_r[i], clk); //compare dispatch source operand with result register in fifo assign rd_match_rs1idx[i] = vld_r[i] & rdwen_r[i] & disp_i_rs1en & (rdfpu_r[i] == disp_i_rs1fpu) & (rdidx_r[i] == disp_i_rs1idx); assign rd_match_rs2idx[i] = vld_r[i] & rdwen_r[i] & disp_i_rs2en & (rdfpu_r[i] == disp_i_rs2fpu) & (rdidx_r[i] == disp_i_rs2idx); assign rd_match_rs3idx[i] = vld_r[i] & rdwen_r[i] & disp_i_rs3en & (rdfpu_r[i] == disp_i_rs3fpu) & (rdidx_r[i] == disp_i_rs3idx); assign rd_match_rdidx [i] = vld_r[i] & rdwen_r[i] & disp_i_rdwen & (rdfpu_r[i] == disp_i_rdfpu ) & (rdidx_r[i] == disp_i_rdidx ); end//} endgenerate//} //rs1 in fifo, so RAW relative assign oitfrd_match_disprs1 = |rd_match_rs1idx; //rs2 in fifo, so RAW relative assign oitfrd_match_disprs2 = |rd_match_rs2idx; //rs3 in fifo, so RAW relative assign oitfrd_match_disprs3 = |rd_match_rs3idx; //rd in fifo, so WAW relative assign oitfrd_match_disprd = |rd_match_rdidx ; assign ret_rdidx = rdidx_r[ret_ptr]; assign ret_pc = pc_r [ret_ptr]; assign ret_rdwen = rdwen_r[ret_ptr]; assign ret_rdfpu = rdfpu_r[ret_ptr]; endmodule