深度强化学习:Deep Q-Learning

在前两篇文章强化学习基础:基本概念和动态规划和强化学习基础:蒙特卡罗和时序差分中介绍的强化学习的三种经典方法(动态规划、蒙特卡罗以及时序差分)适用于有限的状态集合$\mathcal{S}$,以时序差分中的Q-Learning算法为例,一般来说使用n行(n = number of states)和m列(m= number of actions)的矩阵(Q table)来储存action-value function的值,如下图所示:

深度强化学习:Deep Q-Learning_第1张图片

对于连续的状态集合$\mathcal{S}$,上述方法就不能适用了,这时可以引入神经网络来估计Q的值,即Deep Q-Learning,如下图所示:

深度强化学习:Deep Q-Learning_第2张图片

接下来介绍Deep Q-Learning中常用的几种技巧,用于提升学习效果:

  • Stack States:对于连续的状态集合,单个状态不能很好地描述整体的状况。例如下图所示,要判断黑色方块的移动方向,仅凭一副图像是无法判断的,需要连续的多幅图像才能判断出黑色方块在向右移动

深度强化学习:Deep Q-Learning_第3张图片

  • Experience Replay:如下图所示,防止算法在训练过程中忘记了之前场景获得的经验,创建一个Replay Buffer,不断回放之前的场景对算法进行训练;另一方面,相邻的场景之间(例如$[S_{t},A_{t},R_{t+1},S_{t+1}]$与$[S_{t+1},A_{t+1},R_{t+2},S_{t+2}]$)有着一定的相关性,为了防止算法被固定在某些特定的状态空间,从Replay Buffer中随机抽样选取场景进行训练(打乱场景之间的顺序,减少相邻场景的相关性)

深度强化学习:Deep Q-Learning_第4张图片

  • Fixed Q-targets:针对Deep Q-Learning中计算Q值的神经网络的权重系数的更新,有公式如左图所示,此时将TD target近似为了$q_{\pi}(S,A)$的真值,但是当不断更新权重系数时TD target也是不断变化的,这就会使得在训练过程中$q_{\pi}(S,A)$的估计值要接近一个不断变化的值,加大了训练难度,减小了训练效率。解决方案如右图所示,使用相对固定的参数来估计TD target

深度强化学习:Deep Q-Learning_第5张图片

  • Double DQNs:解决TD target对$q_{\pi}(S,A)$的真值可能高估的问题,方案是在计算TD target时使用两个不同的神经网络,将动作$a$的选择过程与TD target的计算过程进行分割。如果和Fixed Q-targets结合起来,可以直接使用$w$和$w^{-}$这两组参数(如下图所示)

深度强化学习:Deep Q-Learning_第6张图片

  • Dueling DQN:如下图所示,相对于直接计算action-value function $Q(s,a)$,将$Q(s,a)$分解为state-value function $V(s)$与advantage-value function $A(s,a)$之和,这样做的原因是多数状态下采取何种行动对$Q(s,a)$的值影响不大,适合直接对状态函数$V(s)$进行估计,再叠加上不同行动对其的影响。在实际计算中,为了使得从$Q(s,a)$能够唯一确定$V(s)$与$A(s,a)$,可以令$A(s,a)$的均值(即$\frac{1}{|\mathcal{A}|}\sum_{a^{\prime}} A(s,a^{\prime})$)为0

深度强化学习:Deep Q-Learning_第7张图片

  • Prioritized Experience Replay:如下图所示,对Replay Buffer中的每个场景加入一个优先级,一个场景的TD error越大,它对应的优先级就越大。其中$e$是一个大于0的常数,防止抽样概率为0;$a$控制按优先级抽样和均匀抽样的比重,$a=1$时完全按优先级抽样,$a=0$时退化为均匀抽样;另外由于是按照优先级进行抽样,还需要改写神经网络中权重系数的更新规则,针对优先级高的场景减少权重更新的步长,使权重更新的过程与场景出现的真实概率一致(特别是在训练的后期,通过参数$b$控制),避免过拟合高优先级的场景

深度强化学习:Deep Q-Learning_第8张图片

 

代码实现 

使用vizdoom强化学习环境,以其中的一个任务为基础进行训练,该任务要确保玩家活着走到目标位置(要做到这一点,路上要躲避敌人的射击或者杀死敌人,否则不可能成功)。该任务每步的奖励与玩家和目标的距离变化有关(+dX for getting closer, -dX for getting further),此外若玩家死亡会有-100的惩罚。

值得注意的是在代码中使用SumTree(二叉树,每个父节点的值是两个子节点的值的和)这一数据结构来存储Replay Buffer中的Priority,具体结构如下图所示,这样做的目的是方便按优先级进行抽样,可以使得每次抽样以及更新优先级的计算均为$O(\ln{n})$。在抽样过程中抽得的叶子节点$x$满足$P(x\leq{k})=\frac{\sum_{i=1}^{k}Priority_i}{\sum_{i=1}^{n}Priority_i},\text{ }k\in\{1,2,\cdots,n\}$

深度强化学习:Deep Q-Learning_第9张图片

import tensorflow as tf      # Deep Learning library
import numpy as np           # Handle matrices
from vizdoom import *        # Doom Environment
import random                # Handling random number generation
import time                  # Handling time calculation
from skimage import transform# Help us to preprocess the frames
from collections import deque# Ordered collection with ends
import matplotlib.pyplot as plt # Display graphs
import warnings # This ignore all the warning messages that are normally printed during the training because of skiimage
warnings.filterwarnings('ignore')

### Here we create our environment
def create_environment():
    game = DoomGame()    
    # Load the correct configuration
    game.load_config("deadly_corridor.cfg")    
    # Load the correct scenario (in our case deadly_corridor scenario)
    game.set_doom_scenario_path("deadly_corridor.wad")    
    game.init()
    # Create an hot encoded version of our actions (7 possible actions)
    possible_actions = np.identity(7,dtype=int).tolist()    
    return game, possible_actions
game, possible_actions = create_environment()

### Preprocess(reduce the complexity of states and the training time)
def preprocess_frame(frame):
    # Grayscale frame(color not add important information, already done by the config file)
    # Crop the screen (remove part that contains no information)   
    cropped_frame = frame[15:-5,20:-20] #[Up: Down, Left: right]    
    # Normalize Pixel Values
    normalized_frame = cropped_frame/255.0
    # Resize
    preprocessed_frame = transform.resize(normalized_frame, [100,120]) 
    return preprocessed_frame # 100x120x1 frame

### Stack frames
stack_size = 4 #stack 4 frames
# Initialize deque with zero-images, one array for each image
stacked_frames  =  deque([np.zeros((100,120), dtype=np.int) for i in range(stack_size)], maxlen=4)
def stack_frames(stacked_frames, state, is_new_episode):
    frame = preprocess_frame(state) #preprocess frame   
    if is_new_episode:
        # Clear our stacked_frames
        stacked_frames = deque([np.zeros((100,120), dtype=np.int) for i in range(stack_size)], maxlen=4)        
        # Because we're in a new episode, copy the same frame 4x
        stacked_frames.append(frame)
        stacked_frames.append(frame)
        stacked_frames.append(frame)
        stacked_frames.append(frame)        
        # Stack the frames
        stacked_state = np.stack(stacked_frames, axis=2)
    else:
        # Append frame to deque, automatically removes the oldest frame
        stacked_frames.append(frame)
        # Build the stacked state
        stacked_state = np.stack(stacked_frames, axis=2)   
    return stacked_state, stacked_frames

### Set the hyperparameters
# MODEL HYPERPARAMETERS
state_size = [100,120,4] # Our input is a stack of 4 frames hence 100x120x4 (Width, height, channels) 
action_size = game.get_available_buttons_size() # 7 possible actions
learning_rate =  0.00025 # Alpha (i.e., learning rate)
# TRAINING HYPERPARAMETERS
total_episodes = 5000 # Total episodes for training
max_steps = 5000 # Max possible steps in an episode
batch_size = 64             
# FIXED Q TARGETS HYPERPARAMETERS 
max_tau = 10000 # The number of steps where we update our target network
# EXPLORATION HYPERPARAMETERS for epsilon greedy strategy
explore_start = 1.0 # exploration probability at start
explore_stop = 0.01 # minimum exploration probability 
decay_rate = 0.00005 # exponential decay rate for exploration prob
# Q LEARNING hyperparameters
gamma = 0.95 # Discounting rate
# MEMORY HYPERPARAMETERS(If you have GPU change to 1 million)
pretrain_length = 100000 # Number of experiences stored in the Memory when initialized for the first time
memory_size = 100000 # Number of experiences the Memory can keep
# MODIFY THIS TO FALSE IF YOU JUST WANT TO SEE THE TRAINED AGENT
training = True

### Set up Deep Q network and Target network (both are Dueling Network)
class DDDQNNet:
    def __init__(self, state_size, action_size, learning_rate, name):
        self.state_size = state_size
        self.action_size = action_size
        self.learning_rate = learning_rate
        self.name = name     
        # use tf.variable_scope to know which network we're using (DQN or target_net)
        # it will be useful when we will update our w- parameters (by copy the DQN parameters)
        with tf.variable_scope(self.name):            
            # create the placeholders
            self.inputs_ = tf.placeholder(tf.float32, [None, *state_size], name="inputs") #[None,100,120,4]
            self.ISWeights_ = tf.placeholder(tf.float32, [None,1], name='IS_weights')
            self.actions_ = tf.placeholder(tf.float32, [None, action_size], name="actions_")
            # Remember that target_Q is the R(s,a) + max Qhat(s', a')
            self.target_Q = tf.placeholder(tf.float32, [None], name="target")            
            # first conv layer
            self.conv1 = tf.layers.conv2d(inputs = self.inputs_, filters = 32, kernel_size = [8,8], \
                                          strides = [4,4], padding = "VALID", name = "conv1", \
                                          kernel_initializer=tf.contrib.layers.xavier_initializer_conv2d())    
            self.conv1_out = tf.nn.elu(self.conv1, name="conv1_out")
            # second conv layer
            self.conv2 = tf.layers.conv2d(inputs = self.conv1_out, filters = 64, kernel_size = [4,4], \
                                          strides = [2,2], padding = "VALID", name = "conv2", \
                                          kernel_initializer=tf.contrib.layers.xavier_initializer_conv2d())
            self.conv2_out = tf.nn.elu(self.conv2, name="conv2_out")
            # third conv layer
            self.conv3 = tf.layers.conv2d(inputs = self.conv2_out, filters = 128, kernel_size = [4,4], \
                                          strides = [2,2], padding = "VALID", name = "conv3", \
                                          kernel_initializer=tf.contrib.layers.xavier_initializer_conv2d())
            self.conv3_out = tf.nn.elu(self.conv3, name="conv3_out")    
            self.flatten = tf.layers.flatten(self.conv3_out)            
            # Here we separate into two streams (Dueling Network)
            # The one that calculate V(s)
            self.value_fc = tf.layers.dense(inputs = self.flatten, units = 512, activation = tf.nn.elu, \
                                            kernel_initializer=tf.contrib.layers.xavier_initializer(), \
                                            name="value_fc")
            self.value = tf.layers.dense(inputs = self.value_fc, units = 1, activation = None, \
                                         kernel_initializer=tf.contrib.layers.xavier_initializer(), \
                                         name="value")
            # The one that calculate A(s,a)
            self.advantage_fc = tf.layers.dense(inputs = self.flatten, units = 512, activation = tf.nn.elu, \
                                                kernel_initializer=tf.contrib.layers.xavier_initializer(), \
                                                name="advantage_fc")
            self.advantage = tf.layers.dense(inputs = self.advantage_fc, units = self.action_size, activation = None, \
                                             kernel_initializer=tf.contrib.layers.xavier_initializer(), \
                                             name="advantages")
            # Agregating layer
            # Q(s,a) = V(s) + (A(s,a) - 1/|A| * sum A(s,a'))
            self.output = self.value + tf.subtract(self.advantage, tf.reduce_mean(self.advantage, axis=1, keepdims=True))
            # Predicted Q value
            self.Q = tf.reduce_sum(tf.multiply(self.output, self.actions_), axis=1)            
            # For computing priority and updating Sumtree
            self.absolute_errors = tf.abs(self.target_Q - self.Q) 
            # The loss is modified because of Priority Experience Replay
            self.loss = tf.reduce_mean(self.ISWeights_ * tf.squared_difference(self.target_Q, self.Q))           
            self.optimizer = tf.train.RMSPropOptimizer(self.learning_rate).minimize(self.loss)
# Reset the graph
tf.reset_default_graph()
# Instantiate the DQNetwork
DQNetwork = DDDQNNet(state_size, action_size, learning_rate, name="DQNetwork")
# Instantiate the target network
TargetNetwork = DDDQNNet(state_size, action_size, learning_rate, name="TargetNetwork")

### Data Struture to store experience and priority(SumTree)
class SumTree(object):
    data_pointer = 0
    # Here we initialize the tree with all nodes = 0, and initialize the data with all values = 0
    def __init__(self, capacity):
        self.capacity = capacity # Number of leaf nodes (final nodes) that contains experiences
        # Generate the tree with all nodes values = 0
        # Parent nodes = capacity - 1, Leaf nodes = capacity
        self.tree = np.zeros(2 * capacity - 1)
        # Contains the experiences (so the size of data is capacity)
        self.data = np.zeros(capacity, dtype=object)
    # Here we add our priority score in the sumtree leaf and add the experience in data
    def add(self, priority, data):
        # Look at what index we want to put the experience
        tree_index = self.data_pointer + self.capacity - 1 # the leaves from left to right
        self.data[self.data_pointer] = data # Update data frames
        self.update(tree_index, priority) # Update the leaf
        self.data_pointer += 1 # Add 1 to data_pointer
        # If we're above the capacity, you go back to first index (we overwrite)
        if self.data_pointer >= self.capacity:  
            self.data_pointer = 0
    # Update the leaf priority score and propagate the change through tree
    def update(self, tree_index, priority):
        # Change = new priority score - former priority score
        change = priority - self.tree[tree_index]
        self.tree[tree_index] = priority      
        # Propagate the change through tree
        while tree_index != 0:
            tree_index = (tree_index - 1) // 2
            self.tree[tree_index] += change
    # Here we get the leaf and associated experience 
    # the returned index is the smallest index satisfying: sum(leaf priority) >= v for leaf index <= returned index
    def get_leaf(self, v):
        parent_index = 0    
        while True:
            left_child_index = 2 * parent_index + 1
            right_child_index = left_child_index + 1            
            # If we reach bottom, end the search
            if left_child_index >= len(self.tree):
                leaf_index = parent_index
                break
            else: # downward search               
                if v <= self.tree[left_child_index]:
                    parent_index = left_child_index                   
                else:
                    v -= self.tree[left_child_index]
                    parent_index = right_child_index            
        data_index = leaf_index - self.capacity + 1
        return leaf_index, self.tree[leaf_index], self.data[data_index]   
    @property
    def total_priority(self):
        return self.tree[0] # Returns the root node

### Create Replay Buffer and Prioritized Experience Replay
class Memory(object):
    PER_e = 0.01  # Hyperparameter that we use to avoid some experiences to have 0 probability of being taken
    PER_a = 0.6  # Hyperparameter that we use to make a tradeoff between taking only exp with high priority and sampling randomly
    PER_b = 0.4  # importance-sampling, from initial value increasing to 1  
    PER_b_increment_per_sampling = 0.001
    absolute_error_upper = 1.  # clipped abs error
    def __init__(self, capacity):
        # Making the tree 
        self.tree = SumTree(capacity)
    # Store a new experience in our tree
    # Each new experience have a score of max_prority (it will be then improved when we use this exp to train our DDQN)
    def store(self, experience):
        # Find the max priority
        max_priority = np.max(self.tree.tree[-self.tree.capacity:])
        # If the max priority = 0 we can't put priority = 0 since this exp will never have a chance to be selected
        # So we use an upper limit
        if max_priority == 0:
            max_priority = self.absolute_error_upper
        self.tree.add(max_priority, experience)   # set the max p for new exp        
    # First, to sample a minibatch of n size, the range [0, priority_total] is split into n ranges.
    # Then a value is uniformly sampled from each range
    # We search in the sumtree, the experience where priority score correspond to sample values are retrieved from
    # Finally, we calculate IS weights for each minibatch element
    def sample(self, n):
        memory_b = [] # Create a sample array that will contains the minibatch       
        b_idx, b_ISWeights = np.empty((n,), dtype=np.int32), np.empty((n, 1), dtype=np.float32)
        priority_segment = self.tree.total_priority / n # priority segment
        # Here we increasing the PER_b each time we sample a new minibatch
        self.PER_b = np.min([1., self.PER_b + self.PER_b_increment_per_sampling])  # max = 1
        # Calculating the max_weight
        p_min = np.min(self.tree.tree[-self.tree.capacity:]) / self.tree.total_priority
        max_weight = (p_min * n) ** (-self.PER_b)
        for i in range(n):
            # A value is uniformly sample from each range
            a, b = priority_segment * i, priority_segment * (i + 1)
            value = np.random.uniform(a, b)
            # Experience that correspond to each value is retrieved
            index, priority, data = self.tree.get_leaf(value)
            sampling_probabilities = priority / self.tree.total_priority # P(j)
            #  IS = (1/N * 1/P(i))**b /max wi == (N*P(i))**-b  /max wi
            b_ISWeights[i, 0] = np.power(n * sampling_probabilities, -self.PER_b)/ max_weight              
            b_idx[i]= index
            experience = [data]
            memory_b.append(experience)
        return b_idx, memory_b, b_ISWeights
    # Update the priorities on the tree
    def batch_update(self, tree_idx, abs_errors):
        abs_errors += self.PER_e  # convert to abs and avoid 0
        clipped_errors = np.minimum(abs_errors, self.absolute_error_upper)
        ps = np.power(clipped_errors, self.PER_a)
        for ti, p in zip(tree_idx, ps):
            self.tree.update(ti, p)

### Deal with the empty memory problem (pre-populate memory by taking random actions and storing the experience)
memory = Memory(memory_size) # Instantiate memory
game.new_episode() # Render the environment
for i in range(pretrain_length):
    # If it's the first step
    if i == 0:
        # First we need a state
        state = game.get_state().screen_buffer
        state, stacked_frames = stack_frames(stacked_frames, state, True)   
    action = random.choice(possible_actions) # Random action  
    reward = game.make_action(action) # Get the rewards   
    done = game.is_episode_finished() # Look if the episode is finished
    # If the player is dead
    if done:
        # the episode ends so no next state 
        next_state = np.zeros((120,140), dtype=np.int)
        next_state, stacked_frames = stack_frames(stacked_frames, next_state, False)
        # Add experience to memory
        experience = state, action, reward, next_state, done
        memory.store(experience)
        # Start a new episode
        game.new_episode()
        # First we need a state
        state = game.get_state().screen_buffer
        # Stack the frames
        state, stacked_frames = stack_frames(stacked_frames, state, True)        
    else:
        # Get the next state
        next_state = game.get_state().screen_buffer
        next_state, stacked_frames = stack_frames(stacked_frames, next_state, False)   
        # Add experience to memory
        experience = state, action, reward, next_state, done
        memory.store(experience)        
        # Our state is now the next_state
        state = next_state

### Choose action from Q (use ϵ-greedy strategy)
def predict_action(explore_start, explore_stop, decay_rate, decay_step, state, actions):
    exp_exp_tradeoff = np.random.rand() # First we randomize a number
    explore_probability = explore_stop + (explore_start - explore_stop) * np.exp(-decay_rate * decay_step)    
    if (explore_probability > exp_exp_tradeoff):
        # Make a random action (exploration)
        action = random.choice(actions)       
    else:
        # Get action from Q-network (exploitation)
        # Estimate the Qs values state
        Qs = sess.run(DQNetwork.output, feed_dict = {DQNetwork.inputs_: state.reshape((1, *state.shape))}) 
        # Take the biggest Q value (= the best action)
        choice = np.argmax(Qs)
        action = actions[int(choice)]
    return action, explore_probability

### Copy the parameters of DQN to Target_network (used for Fixed Q-target and Double DQN)
def update_target_graph():
    # Get the parameters of our DQNNetwork
    from_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, "DQNetwork")
    # Get the parameters of our Target_network
    to_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, "TargetNetwork")
    op_holder = []
    # Update our target_network parameters with DQNNetwork parameters
    for from_var,to_var in zip(from_vars,to_vars):
        op_holder.append(to_var.assign(from_var))
    return op_holder

### Train the agent
saver = tf.train.Saver() # Saver will help us to save our model
if training == True:
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer()) # Initialize the variables
        decay_step = 0 # Initialize the decay step  
        tau = 0 # Set tau = 0
        game.init() # Init the game
        # Update the parameters of our TargetNetwork with DQN_weights
        update_target = update_target_graph()
        sess.run(update_target)
        for episode in range(total_episodes):
            step = 0 # Set step to 0
            episode_rewards = [] # Initialize the rewards of the episode
            game.new_episode() # Make a new episode and observe the first state
            state = game.get_state().screen_buffer
            state, stacked_frames = stack_frames(stacked_frames, state, True)
            while step < max_steps:
                step += 1
                tau += 1
                decay_step +=1
                # ϵ-greedy stragety
                action, explore_probability = predict_action(explore_start, explore_stop, decay_rate, decay_step, state, possible_actions)
                reward = game.make_action(action) # Do the action
                done = game.is_episode_finished() # Look if the episode is finished
                episode_rewards.append(reward) # Add the reward to total reward
                # If the game is finished
                if done:
                    # the episode ends so no next state 
                    next_state = np.zeros((120,140), dtype=np.int)
                    next_state, stacked_frames = stack_frames(stacked_frames, next_state, False)
                    # Set step = max_steps to end the episode
                    step = max_steps
                    # Get the total reward of the episode
                    total_reward = np.sum(episode_rewards)
                    print('Episode: {}'.format(episode), 'Total reward: {}'.format(total_reward), \
                          'Training loss: {:.4f}'.format(loss), 'Explore P: {:.4f}'.format(explore_probability))
                    # Add experience to memory
                    experience = state, action, reward, next_state, done
                    memory.store(experience)
                else:
                    next_state = game.get_state().screen_buffer # Get the next state
                    # Stack the frame of the next_state
                    next_state, stacked_frames = stack_frames(stacked_frames, next_state, False)
                    # Add experience to memory
                    experience = state, action, reward, next_state, done
                    memory.store(experience)
                    state = next_state
                # LEARNING PART            
                tree_idx, batch, ISWeights_mb = memory.sample(batch_size) # Obtain random mini-batch from memory
                states_mb = np.array([each[0][0] for each in batch], ndmin=3)
                actions_mb = np.array([each[0][1] for each in batch])
                rewards_mb = np.array([each[0][2] for each in batch]) 
                next_states_mb = np.array([each[0][3] for each in batch], ndmin=3)
                dones_mb = np.array([each[0][4] for each in batch])
                target_Qs_batch = []
                # DOUBLE DQN
                # Use DQNNetwork to select the action a' to take at next_state s' (action with the highest Q-value)
                # Use TargetNetwork to calculate the Q_val of Q(s',a')
                # Get Q values for next_state 
                q_next_state = sess.run(DQNetwork.output, feed_dict = {DQNetwork.inputs_: next_states_mb}) 
                # Calculate Qtarget for all actions at that state
                q_target_next_state = sess.run(TargetNetwork.output, feed_dict = {TargetNetwork.inputs_: next_states_mb})
                # Set Q_target = r if the episode ends at s+1, otherwise set Q_target = r + gamma * Qtarget(s',a') 
                for i in range(0, len(batch)):
                    terminal = dones_mb[i]
                    # We got a'
                    action = np.argmax(q_next_state[i])
                    # If we are in a terminal state, only equals reward
                    if terminal:
                        target_Qs_batch.append(rewards_mb[i])
                    else:
                        # Take the Qtarget for action a'
                        target = rewards_mb[i] + gamma * q_target_next_state[i][action]
                        target_Qs_batch.append(target)
                targets_mb = np.array([each for each in target_Qs_batch])
                # Optimize
                _, loss, absolute_errors = sess.run([DQNetwork.optimizer, DQNetwork.loss, DQNetwork.absolute_errors], \
                                                    feed_dict={DQNetwork.inputs_: states_mb, DQNetwork.target_Q: targets_mb, \
                                                               DQNetwork.actions_: actions_mb, DQNetwork.ISWeights_: ISWeights_mb})
                # Update priority
                memory.batch_update(tree_idx, absolute_errors)
                # Fixed Q target
                if tau > max_tau:
                    # Update the parameters of our TargetNetwork with DQN_weights
                    update_target = update_target_graph()
                    sess.run(update_target)
                    tau = 0
                    print("Model updated")
            # Save model every 5 episodes
            if episode % 5 == 0:
                save_path = saver.save(sess, "./models/model.ckpt")
                print("Model Saved")

### Watch the agent play
with tf.Session() as sess:   
    game = DoomGame()
    # Load the correct configuration (TESTING)
    game.load_config("deadly_corridor_testing.cfg")
    # Load the correct scenario (in our case deadly_corridor scenario)
    game.set_doom_scenario_path("deadly_corridor.wad")
    game.init()    
    # Load the model
    saver.restore(sess, "./models/model.ckpt")
    for i in range(10):
        game.new_episode()
        state = game.get_state().screen_buffer
        state, stacked_frames = stack_frames(stacked_frames, state, True)
        while not game.is_episode_finished():
            # EPSILON GREEDY STRATEGY
            exp_exp_tradeoff = np.random.rand()
            explore_probability = 0.01
            if (explore_probability > exp_exp_tradeoff):
                # Make a random action (exploration)
                action = random.choice(possible_actions)
            else:
                # Get action from Q-network (exploitation)
                Qs = sess.run(DQNetwork.output, feed_dict = {DQNetwork.inputs_: state.reshape((1, *state.shape))})
                choice = np.argmax(Qs) # Take the biggest Q value (= the best action)
                action = possible_actions[int(choice)]
            game.make_action(action)
            done = game.is_episode_finished()
            if done:
                break  
            else:
                next_state = game.get_state().screen_buffer
                next_state, stacked_frames = stack_frames(stacked_frames, next_state, False)
                state = next_state
        score = game.get_total_reward()
        print("Score: ", score)
    game.close()
View Code

 

你可能感兴趣的:(深度强化学习:Deep Q-Learning)