一步一步剖析Dictionary实现原理

目录

  • 关键的字段和Entry结构
  • 添加键值(Add)
  • 取键值(Find)
  • 移除键值(Remove)
  • 再插入键值

  本文是对c#中Dictionary内部实现原理进行简单的剖析。如有表述错误,欢迎指正。

  主要对照源码来解析,目前对照源码的版本是.Net Framwork 4.8,源码地址。

1. 关键的字段和Entry结构

        struct Entry
        {
            public int hashCode;    // key的hashCode & 0x7FFFFFFF
            public int next;            // 指向链表下一个元素的地址(实际就是entries的索引),最后一个元素为-1
            public TKey key;
            public TValue value;
        }
        Entry[] entries;        //存放键值
        int[] buckets;          //存储entries最新元素的索引,其存储位置由取模结果决定。例:假设键值存储在entries的第1元素的位置上,且hashCode和长度的取模结果为2,那么buckets[2] = 1
        int count = 0;         //已存储键值的个数
        int version;             //记录版本,防止迭代过程中集合被更改
        IEqualityComparer _comparer;    
        int freeList;             //entries中最新空元素的索引
        int freeCount;         //entries中空元素的个数

2. 添加键值(Add)

        public void Add(TKey key, TValue value) {
            Insert(key, value, true);
        }


        private void Insert(TKey key, TValue value, bool add) {
        
            if( key == null ) {
                ThrowHelper.ThrowArgumentNullException(ExceptionArgument.key);
            }
            if (buckets == null) Initialize(0);
            int hashCode = comparer.GetHashCode(key) & 0x7FFFFFFF;
            //取模
            int targetBucket = hashCode % buckets.Length;
#if FEATURE_RANDOMIZED_STRING_HASHING
            int collisionCount = 0;
#endif
            for (int i = buckets[targetBucket]; i >= 0; i = entries[i].next) {
                if (entries[i].hashCode == hashCode &&  comparer.Equals(entries[i].key, key)) {
                    if (add) {
                         ThrowHelper.ThrowArgumentException(ExceptionResource.Argument_AddingDuplicate);
                    }
                    //对于已存在的Key重新赋值
                    entries[i].value = value;
                    version++;
                    return;
                }
#if FEATURE_RANDOMIZED_STRING_HASHING
                collisionCount++;
#endif
            }
            int index;
            if (freeCount > 0) {
                //存在entries中存在空元素
                index = freeList;
                freeList = entries[index].next;
                freeCount--;
            }
            else {
                if (count == entries.Length)
                {
                    //扩容:取大于count * 2的最小素数作为entries和bucket的新容量(即数组长度.Length)
                    Resize();
                    targetBucket = hashCode % buckets.Length;
                }
                index = count;
                count++;
            }
            entries[index].hashCode = hashCode;
            entries[index].next = buckets[targetBucket];
            entries[index].key = key;
            entries[index].value = value;
            //存取链表的头元素的索引(即entries最后存入的元素的在enties中的索引)
            //便于取Key的时每次从链表的头元素开始遍历,详细见FindEntry(TKey key)函数
            buckets[targetBucket] = index;
            version++;
#if FEATURE_RANDOMIZED_STRING_HASHING
#if FEATURE_CORECLR
            // In case we hit the collision threshold we'll need to switch to the  comparer which is using randomized string hashing
            // in this case will be EqualityComparer.Default.
            // Note, randomized string hashing is turned on by default on coreclr so  EqualityComparer.Default will
            // be using randomized string hashing
            if (collisionCount > HashHelpers.HashCollisionThreshold && comparer ==  NonRandomizedStringEqualityComparer.Default)
            {
                comparer = (IEqualityComparer)  EqualityComparer<string>.Default;
                Resize(entries.Length, true);
            }
#else
            if(collisionCount > HashHelpers.HashCollisionThreshold &&  HashHelpers.IsWellKnownEqualityComparer(comparer))
            {
                //如果碰撞次数(单链表长度)大于设置的最大碰撞阈值,需要扩容
                comparer = (IEqualityComparer)  HashHelpers.GetRandomizedEqualityComparer(comparer);
                Resize(entries.Length, true);
            }
#endif // FEATURE_CORECLR
#endif
        }

******************************************************************************************************************************************
        static void Foo()
        {
            var dicData = new Dictionary<int, int>();
      //添加键值
            new List<int> { 1, 2, 4 }.ForEach(item => Add(item, dicData));
            new List<int> { 22, 29, 36, 20 }.ForEach(item => Add(item, dicData));
        }
        static void Add(int key, Dictionary<int, int> dicData)
        {
            dicData.Add(key, key);
        }

2.1 数组entries和buckets初始化

      private void Initialize(int capacity) {
            //取大于capacity的最小质数(素数)
            int size = HashHelpers.GetPrime(capacity);
            buckets = new int[size];
            for (int i = 0; i < buckets.Length; i++) buckets[i] = -1;
            entries = new Entry[size];
            freeList = -1;
        }
    ****************************************************
    internal static class HashHelpers
    {
        ......
        public const int HashCollisionThreshold = 100;       //碰撞阈值
        ......
        public static readonly int[] primes = {
            3, 7, 11, 17, 23, 29, 37, 47, 59, 71, 89, 107, 131, 163, 197, 239, 293,  353, 431, 521, 631, 761, 919,
            1103, 1327, 1597, 1931, 2333, 2801, 3371, 4049, 4861, 5839, 7013, 8419,  10103, 12143, 14591,
            17519, 21023, 25229, 30293, 36353, 43627, 52361, 62851, 75431, 90523,  108631, 130363, 156437,
            187751, 225307, 270371, 324449, 389357, 467237, 560689, 672827, 807403,  968897, 1162687, 1395263,
            1674319, 2009191, 2411033, 2893249, 3471899, 4166287, 4999559, 5999471,  7199369};            //质数(素数)组
        ......

        public static int GetPrime(int min)
        {
            if (min < 0)
                throw new  ArgumentException(Environment.GetResourceString("Arg_HTCapacityOverflow"));
            Contract.EndContractBlock();
            //查找primes是否有满足的质数(素数)
            for (int i = 0; i < primes.Length; i++)
            {
                int prime = primes[i];
                if (prime >= min) return prime;
            }
            //outside of our predefined table.
            //compute the hard way.
            //primes没有查找到满足的质数(素数),自行计算
            for (int i = (min | 1); i < Int32.MaxValue;i+=2)
            {
                if (IsPrime(i) && ((i - 1) % Hashtable.HashPrime != 0))
                    return i;
            }
            return min;
        }
    }

 一步一步剖析Dictionary实现原理_第1张图片

 2.2 添加键值{1,1},则

    hashCode = 1;
  targetBucket = hasCode % buckets.Length;         //targetBucket = 1
    next = buckets[targetBucket];                               //next = -1
    buckets[targetBucket] = index;                             //buckets[1] = 0 

一步一步剖析Dictionary实现原理_第2张图片

 2.3 添加键值{2,2},则

    hashCode = 2;
  targetBucket = hasCode % buckets.Length;         //targetBucket = 2
    next = buckets[targetBucket];                               //next = -1
    buckets[targetBucket] = index;                              //buckets[2] = 1

一步一步剖析Dictionary实现原理_第3张图片

 2.4 添加键值{4,4},则

    hashCode = 4;
    targetBucket = hasCode % buckets.Length;         //targetBucket = 1
    next = buckets[targetBucket];                               //next = 0
    buckets[targetBucket] = index;                              //buckets[1] = 2

一步一步剖析Dictionary实现原理_第4张图片

接下来将entries数组以单链表的形式呈现(即enteries数组横向);

一步一步剖析Dictionary实现原理_第5张图片

 2.5 在继续添加键值之前,需要扩容操作,因为entries数组长度为3且都已有元素。扩容后需要对buckets和entries每个元素的Next需要重新赋值;

       private void Resize() {
            //扩容的大小:取大于(当前容量*2)的最小素数
            //例:
            Resize(HashHelpers.ExpandPrime(count), false);
        }
       private void Resize(int newSize, bool forceNewHashCodes) {
            Contract.Assert(newSize >= entries.Length);
            //实例化buckets,并将每个元素置为-1
            int[] newBuckets = new int[newSize];
            for (int i = 0; i < newBuckets.Length; i++) newBuckets[i] = -1;
            Entry[] newEntries = new Entry[newSize];
            Array.Copy(entries, 0, newEntries, 0, count);
            //如果是Hash碰撞扩容,使用新HashCode函数重新计算Hash值
            if(forceNewHashCodes) {
                for (int i = 0; i < count; i++) {
                    if(newEntries[i].hashCode != -1) {
                        newEntries[i].hashCode =  (comparer.GetHashCode(newEntries[i].key) & 0x7FFFFFFF);
                    }
                }
            }
            //重建单链表
            for (int i = 0; i < count; i++) {
                if (newEntries[i].hashCode >= 0) {
                    //取模重新设置next值和buckets
                    int bucket = newEntries[i].hashCode % newSize;
                    newEntries[i].next = newBuckets[bucket];
                    newBuckets[bucket] = i;
                }
            }
            buckets = newBuckets;
            entries = newEntries;
        }
*******************************************************************
    internal static class HashHelpers
    {
        ......
        public static readonly int[] primes = {
            3, 7, 11, 17, 23, 29, 37, 47, 59, 71, 89, 107, 131, 163, 197, 239, 293,  353, 431, 521, 631, 761, 919,
            1103, 1327, 1597, 1931, 2333, 2801, 3371, 4049, 4861, 5839, 7013, 8419,  10103, 12143, 14591,
            17519, 21023, 25229, 30293, 36353, 43627, 52361, 62851, 75431, 90523,  108631, 130363, 156437,
            187751, 225307, 270371, 324449, 389357, 467237, 560689, 672827, 807403,  968897, 1162687, 1395263,
            1674319, 2009191, 2411033, 2893249, 3471899, 4166287, 4999559, 5999471,  7199369};            //质数(素数)组
        
        ......
        // This is the maximum prime smaller than Array.MaxArrayLength
        public const int MaxPrimeArrayLength = 0x7FEFFFFD;         //数组最大长度的最小质数

        public static int ExpandPrime(int oldSize)
        {    
            //翻倍
            int newSize = 2 * oldSize;
            // Allow the hashtables to grow to maximum possible size (~2G elements)  before encoutering capacity overflow.
            // Note that this check works even when _items.Length overflowed thanks  to the (uint) cast
            //翻倍的大小不能超过【数组最大长度的最小质数】
            if ((uint)newSize > MaxPrimeArrayLength && MaxPrimeArrayLength >  oldSize)
            {
                Contract.Assert( MaxPrimeArrayLength ==  GetPrime(MaxPrimeArrayLength), "Invalid MaxPrimeArrayLength");
                return MaxPrimeArrayLength;
            }
            //取最小的质数(素数)
            return GetPrime(newSize);
        }

        public static int GetPrime(int min)
        {
            if (min < 0)
                throw new  ArgumentException(Environment.GetResourceString("Arg_HTCapacityOverflow"));
            Contract.EndContractBlock();
            //查找primes是否有满足的质数(素数)
            for (int i = 0; i < primes.Length; i++)
            {
                int prime = primes[i];
                if (prime >= min) return prime;
            }
            //outside of our predefined table.
            //compute the hard way.
            //primes没有查找到满足的质数(素数),自行计算
            for (int i = (min | 1); i < Int32.MaxValue;i+=2)
            {
                if (IsPrime(i) && ((i - 1) % Hashtable.HashPrime != 0))
                    return i;
            }
            return min;
        }
    }

一步一步剖析Dictionary实现原理_第6张图片

 2.6 继续添加键值{22,22},{29,29},{36,36},{40,40},添加完后其内部存储结果如下

一步一步剖析Dictionary实现原理_第7张图片

 3. 取键值(Find)

     public TValue this[TKey key] {
            get {
                //取Key对应值在entries的索引
                int i = FindEntry(key);
                if (i >= 0) return entries[i].value;
                ThrowHelper.ThrowKeyNotFoundException();
                return default(TValue);
            }
            set {
                //更新Key对应的值
                Insert(key, value, false);
            }
        }

    private int FindEntry(TKey key) {
            if( key == null) {
                ThrowHelper.ThrowArgumentNullException(ExceptionArgument.key);
            }
            if (buckets != null) {
                int hashCode = comparer.GetHashCode(key) & 0x7FFFFFFF;
                //遍历单链表
                for (int i = buckets[hashCode % buckets.Length]; i >= 0; i =  entries[i].next) {
                    if (entries[i].hashCode == hashCode &&  comparer.Equals(entries[i].key, key)) return i;
                }
            }
            return -1;
        }
*********************************************************************************************
        static void Foo()
        {
            ......
            //取Key=22
            var val =dicData[22];
}

简化取Key对应值的代码

    var hashCode =comparer.GetHashCode(key) & 0x7FFFFFFF;   // 22
    var targetBuget = hashCode % buckets.Length;            //取模运算 1  
    var i = bucket[targetBuget];                            //链表头元素的索引 bucket[1] = 5
    //遍历单链表
    for (; i >= 0; i =  entries[i].next) {
        if (entries[i].hashCode == hashCode &&  comparer.Equals(entries[i].key, key)) return i;
    }

一步一步剖析Dictionary实现原理_第8张图片

 4. 移除键值(Remove)

        public bool Remove(TKey key) {
            if(key == null) {
                ThrowHelper.ThrowArgumentNullException(ExceptionArgument.key);
            }
            if (buckets != null) {
                int hashCode = comparer.GetHashCode(key) & 0x7FFFFFFF;
                int bucket = hashCode % buckets.Length;
                int last = -1;
                //其原理先取出键值,然后记录entries空闲的索引(freeList)和空闲个数(freeCount)
                for (int i = buckets[bucket]; i >= 0; last = i, i = entries[i].next)  {
                    if (entries[i].hashCode == hashCode &&  comparer.Equals(entries[i].key, key)) {
                        if (last < 0) {
                            buckets[bucket] = entries[i].next;
                        }
                        else {
                            entries[last].next = entries[i].next;
                        }
                        entries[i].hashCode = -1;
                        //建立空闲链表
                        entries[i].next = freeList;
                        entries[i].key = default(TKey);
                        entries[i].value = default(TValue);
                        //保存entryies中空元素的索引
                        //便于插入新键值时,放在当前索引的位置,减少entryies空间上的浪费
                        freeList = i;
                        //空元素的个数加1
                        freeCount++;
                        version++;
                        return true;
                    }
                }
            }
            return false;
        }
*******************************************************************
        static void Foo()
        {
            ......
            //移除
            new List<int> { 22, 29 }.ForEach(item => dicData.Remove(item));
        } 

4.1 移除Key=22后,freeList = 3, freeCount = 1,

一步一步剖析Dictionary实现原理_第9张图片

 4.2 移除Key=36后,freeList = 5, freeCount = 2, 

一步一步剖析Dictionary实现原理_第10张图片

 5. 再插入键值

如上图,当移除掉{36,36}后,会发现又诞生一个含有两个元素的“新链表”(上图灰色框)。这个作用就是为了插入新键值时,按照“新链表”记录的索引顺序插入到entries数组中。
例:添加键值{22,22},{25,25},此时freeList = 5,freeCount = 2;
  1. 给entries[5]赋值,freeList = 3, freeCount = 1;
  2. 给entries[3]赋值,freeList = -1, freeCount = 0;

一步一步剖析Dictionary实现原理_第11张图片 

 希望此文能够让你对于Dictionary内部实现有所认识。

你可能感兴趣的:(一步一步剖析Dictionary实现原理)