Redis 源码分析(三) :dict

  • 一、什么是dict
  • 二、Redis dict数据结构
    • hash算法
  • 三、dict的基本操作
    • 创建Dict
    • 新增 - dictAdd
    • 删除 - dictDelete
    • 修改 - dictReplace
    • 查询 - dictFind
    • Rehash
      • 什么是Rehash
      • 什么时候会触发Rehash
      • Rehash的过程
      • Rehash的方式
      • 安全/非安全迭代器
      • dictIterator定义
      • dictGetIterator:创建一个迭代器
      • dictNext:迭代一个dictEntry节点
  • 参考资料

一、什么是dict

dict (dictionary 字典),通常的存储结构是Key-Value形式的,通过Hash函数对key求Hash值来确定Value的位置,因此也叫Hash表,是一种用来解决算法中查找问题的数据结构,默认的算法复杂度接近O(1),Redis本身也叫Remote Dictionary Server(远程字典服务器),其实也就是一个大字典,它的key通常来说是String类型的,但是Value可以是
StringSetZSetHashList等不同的类型,下面我们看下dict的数据结构定义。

二、Redis Dict数据结构

Redis 源码分析(三) :dict_第1张图片
redis_dict.png

从上图可以看出与dict相关的关键数据结构有三个,分别是:

  • dict是Redis中的字典结构,包含两个dictht。
  • dictht表示一个Hash表。
  • dictEntry 是Redis中的字典结构,包含两个dictht。

dictEntry代码如下

// redis 5.0.2
typedef struct dictEntry {
    void *key; //key void*表示任意类型指针
    union {//联合体中对于数字类型提供了专门的类型优化
        void *val;
        uint64_t u64;
        int64_t s64;
        double d;
    } v;
    struct dictEntry *next; //next指针,用拉链法解决哈希冲突
} dictEntry;

dictht代码如下

// redis 5.0.2
/* This is our hash table structure. Every dictionary has two of this as we
 * implement incremental rehashing, for the old to the new table. */
typedef struct dictht {
    dictEntry **table; //数组指针,每个元素都是一个指向dictEntry的指针
    unsigned long size; //表示这个dictht已经分配空间的大小,大小总是2^n
    unsigned long sizemask;//sizemask = size - 1; 是用来求hash值的掩码,为2^n-1
    unsigned long used; //目前已有的元素数量
} dictht;

dict代码如下

typedef struct dict {
    dictType *type; //type中定义了对于Hash表的操作函数,比如Hash函数,key比较函数等
    void *privdata; //privdata是可以传递给dict的私有数据     
    dictht ht[2]; //每一个dict都包含两个dictht,一个用于rehash
    long rehashidx; /* rehashing not in progress if rehashidx == -1 */
    unsigned long iterators; /* number of iterators currently running */
} dict;

typedef struct dictType {
    uint64_t (*hashFunction)(const void *key);// 计算hash值的函数
    void *(*keyDup)(void *privdata, const void *key);// 键复制
    void *(*valDup)(void *privdata, const void *obj);// 值复制
    int (*keyCompare)(void *privdata, const void *key1, const void *key2);// 键比较
    void (*keyDestructor)(void *privdata, void *key);// 键销毁
    void (*valDestructor)(void *privdata, void *obj);// 值销毁
} dictType;

其实通过上面的三个数据结构,已经可以大概看出dict的组成,数据(Key-Value)存储在每一个dictEntry节点;然后一条Hash表就是一个dictht结构,里面标明了Hash表的size,used等信息;最后每一个Redis的dict结构都会默认包含两个dictht,如果有一个Hash表满足特定条件需要扩容,则会申请另一个Hash表,然后把元素ReHash过来,ReHash的意思就是重新计算每个Key的Hash值,然后把它存放在第二个Hash表合适的位置,但是这个操作在Redis中并不是集中式一次完成的,而是在后续的增删改查过程中逐步完成的,这个叫渐进式ReHash,我们后文会专门讨论。

hash算法

redis内置2种hash算法

  • dictGenHashFunction,对字符串进行hash

  • dictGenCaseHashFunction,对字符串进行hash,不区分大小写

      /* The default hashing function uses SipHash implementation
       * in siphash.c. */
      
      uint64_t siphash(const uint8_t *in, const size_t inlen, const uint8_t *k);
      uint64_t siphash_nocase(const uint8_t *in, const size_t inlen, const uint8_t *k);
      
      uint64_t dictGenHashFunction(const void *key, int len) {
          return siphash(key,len,dict_hash_function_seed);
      }
      
      uint64_t dictGenCaseHashFunction(const unsigned char *buf, int len) {
          return siphash_nocase(buf,len,dict_hash_function_seed);
      }
    

三、Dict的基本操作

创建Dict

/* Reset a hash table already initialized with ht_init().
 * NOTE: This function should only be called by ht_destroy(). */
static void _dictReset(dictht *ht)
{
    ht->table = NULL;
    ht->size = 0;
    ht->sizemask = 0;
    ht->used = 0;
}

/* Create a new hash table */
dict *dictCreate(dictType *type,
        void *privDataPtr)
{
    dict *d = zmalloc(sizeof(*d));

    _dictInit(d,type,privDataPtr);
    return d;
}

/* Initialize the hash table */
int _dictInit(dict *d, dictType *type,
        void *privDataPtr)
{
    _dictReset(&d->ht[0]);
    _dictReset(&d->ht[1]);
    d->type = type;
    d->privdata = privDataPtr;
    d->rehashidx = -1;
    d->iterators = 0;
    return DICT_OK;
}

需要注意的是创建初始化一个dict时并没有为buckets分配空间,table是赋值为null的。只有在往dict里添加dictEntry节点时才会为buckets分配空间,真正意义上创建一张hash表。

执行dictCreate后会得到如下布局:

Redis 源码分析(三) :dict_第2张图片
redis_dict_create.png

新增 - dictAdd

#define dictSetVal(d, entry, _val_) do { \
    if ((d)->type->valDup) \
        (entry)->v.val = (d)->type->valDup((d)->privdata, _val_); \
    else \
        (entry)->v.val = (_val_); \
} while(0)

/* Add an element to the target hash table */
int dictAdd(dict *d, void *key, void *val)
{
    dictEntry *entry = dictAddRaw(d,key,NULL);//只在buckets的某个索引里新建一个dictEntry并调整链表的位置,只设置key,不设置不设置val

    if (!entry) return DICT_ERR;
    dictSetVal(d, entry, val);
    return DICT_OK;
}


/* Low level add or find:
 * This function adds the entry but instead of setting a value returns the
 * dictEntry structure to the user, that will make sure to fill the value
 * field as he wishes.
 *
 * This function is also directly exposed to the user API to be called
 * mainly in order to store non-pointers inside the hash value, example:
 *
 * entry = dictAddRaw(dict,mykey,NULL);
 * if (entry != NULL) dictSetSignedIntegerVal(entry,1000);
 *
 * Return values:
 *
 * If key already exists NULL is returned, and "*existing" is populated
 * with the existing entry if existing is not NULL.
 *
 * If key was added, the hash entry is returned to be manipulated by the caller.
 */
dictEntry *dictAddRaw(dict *d, void *key, dictEntry **existing)
{
    long index;
    dictEntry *entry;
    dictht *ht;

    if (dictIsRehashing(d)) _dictRehashStep(d);//判断是否是在rehash,如果是rehash会渐进式reash

    /* Get the index of the new element, or -1 if
     * the element already exists. */
    if ((index = _dictKeyIndex(d, key, dictHashKey(d,key), existing)) == -1)
        return NULL;

    /* Allocate the memory and store the new entry.
     * Insert the element in top, with the assumption that in a database
     * system it is more likely that recently added entries are accessed
     * more frequently. */
    ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];//如果正在rehash的话存第二个hashtable里面
    entry = zmalloc(sizeof(*entry));
    entry->next = ht->table[index];
    ht->table[index] = entry;
    ht->used++;

    /* Set the hash entry fields. */
    dictSetKey(d, entry, key);
    return entry;
}

主要分为以下几个步骤:

  1. 根据key的hash值找到应该存放的位置(buckets索引)。
  2. 若dict是刚创建的还没有为bucekts分配内存,则会在找位置(_dictKeyIndex)时调用_dictExpandIfNeeded,为dictht[0]expand一个大小为4的buckets;若dict正好到了expand的时机,则会expand它的dictht[1],并将rehashidx置为0打开rehash开关,_dictKeyIndex返回的会是dictht[1]的索引。
  3. 申请一个dictEntry大小的内存插入到buckets对应索引下的链表头部,并给dictEntry设置next指针和key。
  4. 为dictEntry设置value

删除 - dictDelete

#define dictCompareKeys(d, key1, key2) \
(((d)->type->keyCompare) ? \
    (d)->type->keyCompare((d)->privdata, key1, key2) : \
    (key1) == (key2))
    
/* Remove an element, returning DICT_OK on success or DICT_ERR if the
 * element was not found. */
int dictDelete(dict *ht, const void *key) {
    return dictGenericDelete(ht,key,0) ? DICT_OK : DICT_ERR;
}

/* Search and remove an element. This is an helper function for
 * dictDelete() and dictUnlink(), please check the top comment
 * of those functions. */
static dictEntry *dictGenericDelete(dict *d, const void *key, int nofree) {
    uint64_t h, idx;
    dictEntry *he, *prevHe;
    int table;

    if (d->ht[0].used == 0 && d->ht[1].used == 0) return NULL;

    if (dictIsRehashing(d)) _dictRehashStep(d);
    h = dictHashKey(d, key);

    for (table = 0; table <= 1; table++) {
        idx = h & d->ht[table].sizemask;
        he = d->ht[table].table[idx];//找到key对应的bucket索引
        prevHe = NULL;
        while(he) {
            if (key==he->key || dictCompareKeys(d, key, he->key)) {
                /* Unlink the element from the list */
                if (prevHe)
                    prevHe->next = he->next;
                else
                    d->ht[table].table[idx] = he->next;
                if (!nofree) {
                    dictFreeKey(d, he);
                    dictFreeVal(d, he);
                    zfree(he);
                }
                d->ht[table].used--;
                return he;
            }
            prevHe = he;
            he = he->next;
        }
        if (!dictIsRehashing(d)) break;
    }
    return NULL; /* not found */
}

/* Clear & Release the hash table */
void dictRelease(dict *d)
{
    _dictClear(d,&d->ht[0],NULL);
    _dictClear(d,&d->ht[1],NULL);
    zfree(d);
}

修改 - dictReplace

/* Add or Overwrite:
 * Add an element, discarding the old value if the key already exists.
 * Return 1 if the key was added from scratch, 0 if there was already an
 * element with such key and dictReplace() just performed a value update
 * operation. */
int dictReplace(dict *d, void *key, void *val)
{
    dictEntry *entry, *existing, auxentry;

    /* Try to add the element. If the key
     * does not exists dictAdd will succeed. */
    entry = dictAddRaw(d,key,&existing);
    if (entry) {
        dictSetVal(d, entry, val);
        return 1;
    }

    /* Set the new value and free the old one. Note that it is important
     * to do that in this order, as the value may just be exactly the same
     * as the previous one. In this context, think to reference counting,
     * you want to increment (set), and then decrement (free), and not the
     * reverse. */
    auxentry = *existing;
    dictSetVal(d, existing, val);
    dictFreeVal(d, &auxentry);
    return 0;
}

查询 - dictFind

dictEntry *dictFind(dict *d, const void *key)
{
    dictEntry *he;
    uint64_t h, idx, table;

    if (d->ht[0].used + d->ht[1].used == 0) return NULL; /* dict is empty */
    if (dictIsRehashing(d)) _dictRehashStep(d);
    h = dictHashKey(d, key);
    for (table = 0; table <= 1; table++) {
        idx = h & d->ht[table].sizemask;
        he = d->ht[table].table[idx];
        while(he) {
            if (key==he->key || dictCompareKeys(d, key, he->key))
                return he;
            he = he->next;
        }
        if (!dictIsRehashing(d)) return NULL;
    }
    return NULL;
}

Rehash

什么是Rehash

随着操作的不断执行,hash表保存的键值对会逐渐的增多或者减少,这时就会暴露一些问题。如果hash表很大,但是键值对太少,也就是hash表的负载(dictht->used/dictht->size)太小,就会有大量的内存浪费;如果hash表的负载太大,就会影响字典的查找效率。这时候就需要进行rehash将hash表的负载控制在一个合理的范围。

什么时候会触发Rehash

当调用dictAdd为dict添加一个dictEntry节点时候,会_dictKeyIndex找到应该放置在buckets的哪个索引里,在这里会调用_dictExpandIfNeeded检查当前哈希表的空间是需要扩充(Rehash),若满足条件:dictht[0]的dictEntry节点数/buckets的索引数>=1则调用dictExpand,若dictEntry节点数/buckets的索引数>=dict_force_resize_ratio(默认是5),则强制执行dictExpand扩充dictht[1]。

/* Returns the index of a free slot that can be populated with
 * a hash entry for the given 'key'.
 * If the key already exists, -1 is returned
 * and the optional output parameter may be filled.
 *
 * Note that if we are in the process of rehashing the hash table, the
 * index is always returned in the context of the second (new) hash table. */
static long _dictKeyIndex(dict *d, const void *key, uint64_t hash, dictEntry **existing)
{
    unsigned long idx, table;
    dictEntry *he;
    if (existing) *existing = NULL;

    /* Expand the hash table if needed */
    if (_dictExpandIfNeeded(d) == DICT_ERR)
        return -1;
    for (table = 0; table <= 1; table++) {
        idx = hash & d->ht[table].sizemask;
        /* Search if this slot does not already contain the given key */
        he = d->ht[table].table[idx];
        while(he) {
            if (key==he->key || dictCompareKeys(d, key, he->key)) {
                if (existing) *existing = he;
                return -1;
            }
            he = he->next;
        }
        if (!dictIsRehashing(d)) break;
    }
    return idx;
}

/* Expand the hash table if needed */
//判断dictht[1]是否需要扩充(并将dict调整为正在rehash状态);若dict刚创建,则扩充dictht[0]  
static int _dictExpandIfNeeded(dict *d)
{
    /* Incremental rehashing already in progress. Return. */
    if (dictIsRehashing(d)) return DICT_OK; //如果正在ReHash,那直接返回OK,其实也表明申请了空间不久。

    /* If the hash table is empty expand it to the initial size. */
    if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);//如果 0 号哈希表的大小为0,表示还未创建,按照默认大小`DICT_HT_INITIAL_SIZE=4`去创建

    /* If we reached the 1:1 ratio, and we are allowed to resize the hash
     * table (global setting) or we should avoid it but the ratio between
     * elements/buckets is over the "safe" threshold, we resize doubling
     * the number of buckets. */
     //如果满足 0 号哈希表used>size &&(dict_can_resize为1 或者 used/size > 5) 那就默认扩两倍大小
    if (d->ht[0].used >= d->ht[0].size &&
        (dict_can_resize ||
         d->ht[0].used/d->ht[0].size > dict_force_resize_ratio))
    {
        return dictExpand(d, d->ht[0].used*2);
    }
    return DICT_OK;
}


/* Expand or create the hash table */
//三个功能:
//1.为刚初始化的dict的dictht[0]分配table(buckets)
//2.为已经达到rehash要求的dict的dictht[1]分配一个更大(下一个2^n)的table(buckets),并将rehashidx置为0
//3.为需要缩小bucket的dict分配一个更小的buckets,并将rehashidx置为0(打开rehash开关)
int dictExpand(dict *d, unsigned long size)
{
    /* the size is invalid if it is smaller than the number of
     * elements already inside the hash table */
    if (dictIsRehashing(d) || d->ht[0].used > size)
        return DICT_ERR;

    dictht n; /* the new hash table */
    unsigned long realsize = _dictNextPower(size);////从4开始找大于等于size的最小2^n作为新的slot数量

    /* Rehashing to the same table size is not useful. */
    if (realsize == d->ht[0].size) return DICT_ERR;

    /* Allocate the new hash table and initialize all pointers to NULL */
    n.size = realsize;
    n.sizemask = realsize-1;
    n.table = zcalloc(realsize*sizeof(dictEntry*));
    n.used = 0;

    /* Is this the first initialization? If so it's not really a rehashing
     * we just set the first hash table so that it can accept keys. */
    if (d->ht[0].table == NULL) {//刚创建的dict
        d->ht[0] = n;//为d->ht[0]赋值
        return DICT_OK;
    }

    /* Prepare a second hash table for incremental rehashing */
    d->ht[1] = n;
    d->rehashidx = 0;//设置为0表示开始从0号bucket Rehash
    return DICT_OK;
}

Rehash的过程

假设一个dict已经有4个dictEntry节点(value分别为"a","b","c","d"),根据key的不同,存放在buckets的不同索引下。


Redis 源码分析(三) :dict_第3张图片
redis_rehash_1.png

现在如果我们想添加一个dictEntry,由于d->ht[0].used >= d->ht[0].size (4>=4),满足了扩充dictht[1]的条件,会执行dictExpand。根据扩充规则,dictht[1]的buckets会扩充到8个槽位。


Redis 源码分析(三) :dict_第4张图片
redis_rehash_2.png

之后再将要添加的dictEntry加入到dictht[1]的buckets中的某个索引下,不过这个操作不属于dictExpand,不展开了。
扩充之后的dict的成员变量rehashidx被赋值为0,此后每次CRUD都会执行一次被动rehash把dictht[0]的buckets中的一个链表迁移到dictht[1]中,直到迁移完毕。

Rehash的方式

  1. 主动Rehash,一毫秒执行一次

     /* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */
     int dictRehashMilliseconds(dict *d, int ms) {
         long long start = timeInMilliseconds();
         int rehashes = 0;
     
         while(dictRehash(d,100)) {//每次最多执行buckets的100个链表rehash
             rehashes += 100;
             if (timeInMilliseconds()-start > ms) break;
         }
         return rehashes;
     }
    
  2. 被动Rehash,字典的增删改查(CRUD)调用dictAdd,dicFind,dictDelete,dictGetRandomKey等函数时,会调用_dictRehashStep,迁移buckets中的一个非空bucket

  3.  if (dictIsRehashing(d)) _dictRehashStep(d);
    

rehash函数

/* Performs N steps of incremental rehashing. Returns 1 if there are still
 * keys to move from the old to the new hash table, otherwise 0 is returned.
 *
 * Note that a rehashing step consists in moving a bucket (that may have more
 * than one key as we use chaining) from the old to the new hash table, however
 * since part of the hash table may be composed of empty spaces, it is not
 * guaranteed that this function will rehash even a single bucket, since it
 * will visit at max N*10 empty buckets in total, otherwise the amount of
 * work it does would be unbound and the function may block for a long time. */
int dictRehash(dict *d, int n) {
    //int empty_visits = n*10; empty_visits表示每次最多跳过10倍步长的空桶
    //(一个桶就是ht->table数组的一个位置),然后当我们找到一个非空的桶时,
    // 就将这个桶中所有的key全都ReHash到 1 号Hash表。最后每次都会判断是否将所有的key全部ReHash了,
    // 如果已经全部完成,就释放掉ht[0],然后将ht[1]变成ht[0]。
    int empty_visits = n*10; /* Max number of empty buckets to visit. */
    if (!dictIsRehashing(d)) return 0;

    while(n-- && d->ht[0].used != 0) {//遍历n个bucket,ht[0]中还有dictEntry
        dictEntry *de, *nextde;

        /* Note that rehashidx can't overflow as we are sure there are more
         * elements because ht[0].used != 0 */
        assert(d->ht[0].size > (unsigned long)d->rehashidx);
        while(d->ht[0].table[d->rehashidx] == NULL) {
            //当前bucket为空时跳到下一个bucket并且
            d->rehashidx++;
            if (--empty_visits == 0) return 1;
        }
        //直到当前bucket不为空bucket时
        de = d->ht[0].table[d->rehashidx];
        /* Move all the keys in this bucket from the old to the new hash HT */
        while(de) {//把当前bucket的所有ditcEntry节点都移到ht[1]
            uint64_t h;

            nextde = de->next;
            /* Get the index in the new hash table */
            //hash函数算出的值& 新hashtable(buckets)的sizemask,保证h会小于新buckets的size
            h = dictHashKey(d, de->key) & d->ht[1].sizemask;
            de->next = d->ht[1].table[h];//插入到链表的最前面!省时间
            d->ht[1].table[h] = de;
            d->ht[0].used--;
            d->ht[1].used++;
            de = nextde;
        }
        d->ht[0].table[d->rehashidx] = NULL;//当前bucket已经完全移走
        d->rehashidx++;
    }

    /* Check if we already rehashed the whole table... */
    if (d->ht[0].used == 0) {
        zfree(d->ht[0].table);//释放掉ht[0].table的内存(buckets)
        d->ht[0] = d->ht[1];//浅复制,table只是一个地址,直接给ht[0]就好
        _dictReset(&d->ht[1]);//ht[1]的table置空
        d->rehashidx = -1;
        return 0;
    }

    /* More to rehash... */
    return 1;
}

安全/非安全迭代器

safe迭代器:用户在迭代过程中可以对元素进行CRUD
undsafe迭代器:用户在迭代过程中禁止对元素进行CRUD

redis在dict结构里增加一个iterator成员,用来表示绑定在当前dict上的safe迭代器数量,dict每次CRUD执行_dictRehashStep时判断一下是否有绑定safe迭代器,如果有则不进行rehash以免扰乱迭代器的迭代,这样safe迭代时字典就可以正常进行CRUD操作了。

static void _dictRehashStep(dict *d) {
    if (d->iterators == 0) dictRehash(d,1);
}

unsafe迭代器在执行迭代过程中不允许对dict进行其他操作,如何保证这一点呢?

redis在第一次执行迭代时会用dictht[0]dictht[1]usedsizebuckets地址计算一个fingerprint(指纹),在迭代结束后释放迭代器时再计算一遍fingerprint看看是否与第一次计算的一致,若不一致则用断言终止进程,生成指纹的函数如下:

//unsafe迭代器在第一次dictNext时用dict的两个dictht的table、size、used进行hash算出一个结果
//最后释放iterator时再调用这个函数生成指纹,看看结果是否一致,不一致就报错.
//safe迭代器不会用到这个
long long dictFingerprint(dict *d) {
    long long integers[6], hash = 0;
    int j;

    integers[0] = (long) d->ht[0].table;//把指针类型转换成long
    integers[1] = d->ht[0].size;
    integers[2] = d->ht[0].used;
    integers[3] = (long) d->ht[1].table;
    integers[4] = d->ht[1].size;
    integers[5] = d->ht[1].used;

    /* We hash N integers by summing every successive integer with the integer
     * hashing of the previous sum. Basically:
     *
     * Result = hash(hash(hash(int1)+int2)+int3) ...
     *
     * This way the same set of integers in a different order will (likely) hash
     * to a different number. */
    for (j = 0; j < 6; j++) {
        hash += integers[j];
        /* For the hashing step we use Tomas Wang's 64 bit integer hash. */
        hash = (~hash) + (hash << 21); // hash = (hash << 21) - hash - 1;
        hash = hash ^ (hash >> 24);
        hash = (hash + (hash << 3)) + (hash << 8); // hash * 265
        hash = hash ^ (hash >> 14);
        hash = (hash + (hash << 2)) + (hash << 4); // hash * 21
        hash = hash ^ (hash >> 28);
        hash = hash + (hash << 31);
    }
    return hash;
}

dictIterator定义

typedef struct dictIterator {
    dict *d;
    long index;//当前buckets索引,buckets索引类型是unsinged long,而这个初始化会是-1,所以long
    int table, safe;//table是ht的索引只有0和1,safe是安全迭代器和不安全迭代器
    //安全迭代器就等于加了一个锁在dict,使dict在CRUD时ditcEntry不能被动rehash
    dictEntry *entry, *nextEntry;//当前hash节点以及下一个hash节点
    /* unsafe iterator fingerprint for misuse detection. */
    long long fingerprint;//dict.c里的dictFingerprint(),不安全迭代器相关
} dictIterator;

dictGetIterator:创建一个迭代器

//默认是new一个unsafe迭代器
dictIterator *dictGetIterator(dict *d)//获取一个iterator就是为这个dict new一个迭代器
{
    //不设置成员变量fingerprint,在dictNext的时候才设置。
    dictIterator *iter = zmalloc(sizeof(*iter));

    iter->d = d;
    iter->table = 0;
    iter->index = -1;
    iter->safe = 0;
    iter->entry = NULL;
    iter->nextEntry = NULL;
    return iter;
}

dictIterator *dictGetSafeIterator(dict *d) {
    dictIterator *i = dictGetIterator(d);

    i->safe = 1;
    return i;
}

dictNext:迭代一个dictEntry节点

虽然safe迭代器会禁止rehash,但在迭代时有可能已经rehash了一部分,所以迭代器也会遍历在dictht[1]中的所有dictEntry。

参考资料

Redis源码分析(dict)

redis源码解读(三):基础数据结构之dict

Redis源码分析(dict)

你可能感兴趣的:(Redis 源码分析(三) :dict)