[BZOJ3451]Normal(点分治+FFT)

[BZOJ3451]Normal(点分治+FFT)

题面

给你一棵 n个点的树,对这棵树进行随机点分治,每次随机一个点作为分治中心。定义消耗时间为每层分治的子树大小之和,求消耗时间的期望。

分析

根据期望的线性性,答案是\(\sum_{i=1}^n(i的期望子树大小)=\sum_{i=1}^n \sum_{j=1}^n [j在i的点分治子树内]\)

考虑j在i的点分治子树内的条件,显然i到j的路径上的所有点中,i是第一个被选择为分治中心的。否则如果选的点不是i,那么i和j会被分到两棵子树中。第一个被选择的的概率是\(\frac{1}{dist(i,j)+1}\)(\(dist(i,j)\)表示i到j的距离)。那么上式就可以写成\(\sum_{i=1}^n \sum_{j=1}^n \frac{1}{dist(i,j)+1}\)

转换一下,设\(cnt[d]\)表示\(dist(i,j)=d\)\((i,j)\)个数,那么答案为\(\sum_{d=0}^{n-1} \frac{cnt[d]}{d+1}\)。考虑如何求\(cnt[k]\)

我们在点分治的过程中,dfs出深度为i的节点个数cd[i]。那么求经过根节点的答案的时候就是\(cnt[i]=\sum_{j=0}^i cd[j]cd[i-j]\).容易看出这是一个卷积的形式,直接用cd和自身FFT求卷积即可。

注意最后要像一般的点分治一样容斥一下.

时间复杂度满足递推式\(T(n)=2T(\frac{n}{2})+\frac{1}{2}n\log n\).根据主定理的第二种情况,答案是\(O(n\log^2 n)\)

代码

#include
#include
#include
#include
#define maxn 200000
using namespace std;
typedef long double db;
typedef long long ll;
const db pi=acos(-1.0);
struct com{//复数类
    double real;
    double imag;
    com(){

    } 
    com(double _real,double _imag){
        real=_real;
        imag=_imag;
    }
    com(double x){
        real=x;
        imag=0;
    }
    void operator = (const com x){
        this->real=x.real;
        this->imag=x.imag;
    }
    void operator = (const double x){
        this->real=x;
        this->imag=0;
    }
    friend com operator + (com p,com q){
        return com(p.real+q.real,p.imag+q.imag);
    }
    friend com operator + (com p,double q){
        return com(p.real+q,p.imag);
    }
    void operator += (com q){
        *this=*this+q;
    }
    void operator += (double q){
        *this=*this+q;
    }
    friend com operator - (com p,com q){
        return com(p.real-q.real,p.imag-q.imag);
    }
    friend com operator - (com p,double q){
        return com(p.real-q,p.imag);
    }
    void operator -= (com q){
        *this=*this-q;
    }
    void operator -= (double q){
        *this=*this-q;
    }
    friend com operator * (com p,com q){
        return com(p.real*q.real-p.imag*q.imag,p.real*q.imag+p.imag*q.real);
    }
    friend com operator * (com p,double q){
        return com(p.real*q,p.imag*q);
    } 
    void operator *= (com q){
        *this=(*this)*q;
    }
    void operator *= (double q){
        *this=(*this)*q;
    }
    friend com operator / (com p,double q){
        return com(p.real/q,p.imag/q);
    } 
    void operator /= (double q){
        *this=(*this)/q;
    } 
    void print(){
        printf("%lf + %lf i ",real,imag);
    }
};
void fft(com *x,int n,int type){
    static int rev[maxn+5];
    int dn=1,k=0;
    while(dn>1]>>1)|((i&1)<<(k-1));
    for(int i=0;i

你可能感兴趣的:([BZOJ3451]Normal(点分治+FFT))