[BZOJ3451]Normal(点分治+FFT)
题面
给你一棵 n个点的树,对这棵树进行随机点分治,每次随机一个点作为分治中心。定义消耗时间为每层分治的子树大小之和,求消耗时间的期望。
分析
根据期望的线性性,答案是\(\sum_{i=1}^n(i的期望子树大小)=\sum_{i=1}^n \sum_{j=1}^n [j在i的点分治子树内]\)
考虑j在i的点分治子树内的条件,显然i到j的路径上的所有点中,i是第一个被选择为分治中心的。否则如果选的点不是i,那么i和j会被分到两棵子树中。第一个被选择的的概率是\(\frac{1}{dist(i,j)+1}\)(\(dist(i,j)\)表示i到j的距离)。那么上式就可以写成\(\sum_{i=1}^n \sum_{j=1}^n \frac{1}{dist(i,j)+1}\)
转换一下,设\(cnt[d]\)表示\(dist(i,j)=d\)的\((i,j)\)个数,那么答案为\(\sum_{d=0}^{n-1} \frac{cnt[d]}{d+1}\)。考虑如何求\(cnt[k]\)
我们在点分治的过程中,dfs出深度为i的节点个数cd[i]。那么求经过根节点的答案的时候就是\(cnt[i]=\sum_{j=0}^i cd[j]cd[i-j]\).容易看出这是一个卷积的形式,直接用cd和自身FFT求卷积即可。
注意最后要像一般的点分治一样容斥一下.
时间复杂度满足递推式\(T(n)=2T(\frac{n}{2})+\frac{1}{2}n\log n\).根据主定理的第二种情况,答案是\(O(n\log^2 n)\)
代码
#include
#include
#include
#include
#define maxn 200000
using namespace std;
typedef long double db;
typedef long long ll;
const db pi=acos(-1.0);
struct com{//复数类
double real;
double imag;
com(){
}
com(double _real,double _imag){
real=_real;
imag=_imag;
}
com(double x){
real=x;
imag=0;
}
void operator = (const com x){
this->real=x.real;
this->imag=x.imag;
}
void operator = (const double x){
this->real=x;
this->imag=0;
}
friend com operator + (com p,com q){
return com(p.real+q.real,p.imag+q.imag);
}
friend com operator + (com p,double q){
return com(p.real+q,p.imag);
}
void operator += (com q){
*this=*this+q;
}
void operator += (double q){
*this=*this+q;
}
friend com operator - (com p,com q){
return com(p.real-q.real,p.imag-q.imag);
}
friend com operator - (com p,double q){
return com(p.real-q,p.imag);
}
void operator -= (com q){
*this=*this-q;
}
void operator -= (double q){
*this=*this-q;
}
friend com operator * (com p,com q){
return com(p.real*q.real-p.imag*q.imag,p.real*q.imag+p.imag*q.real);
}
friend com operator * (com p,double q){
return com(p.real*q,p.imag*q);
}
void operator *= (com q){
*this=(*this)*q;
}
void operator *= (double q){
*this=(*this)*q;
}
friend com operator / (com p,double q){
return com(p.real/q,p.imag/q);
}
void operator /= (double q){
*this=(*this)/q;
}
void print(){
printf("%lf + %lf i ",real,imag);
}
};
void fft(com *x,int n,int type){
static int rev[maxn+5];
int dn=1,k=0;
while(dn>1]>>1)|((i&1)<<(k-1));
for(int i=0;i