@TOC
就想取个标题
这些操作在状压DP中都很常用,灵活应用可以很好地降低码量,降低常数。
取出x的第i位:
\(y\)= (\(x\)>>(\(i\)-$1$))&$1$;
将x第i位取反
\(x\) ^= $1$<<(\(i\)-$1$);
将x第i位变为1
\(x\) |= $1$<<(\(i\)-$1$);
将x第i位变为0
\(x\) &= ~($1$<<(\(i\)-$1$));
将x最靠右的1变成0
\(x\) = $x$&(\(x\)-1);
取出x最靠右的1
\(y\) = $x$&(-\(x\));
这也是树状数组中我们熟知的$lowbit$
把最靠右的0变成1
\(x\)|=\(x\)+$1$
判断是否有两个连续的1
\(if\)($x$&(\(x\)<<$1$)) \(cout\)<<"\(YES\)";
判断是否有$n$个连续的$1$
\(if\)($x$&(\(x\)<<$1$)&&$x$&(\(x\)<<$2$)...&&$x$&(\(x\)<<\(n\)-$1$))
枚举子集
定义$sta$为初始状态
\(for\)( \(int\) \(x\) = \(sta\) ; \(x\) ; \(x\) = ( ( \(x\) - $1$ )&$sta$) ) \(cout\)<<\(x\);