算法学习(1)----扩展欧几里得算法

欧几里德算法

欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:

gcd函数就是用来求(a,b)的最大公约数的。

gcd函数的基本性质:

gcd(a,b)=gcd(b,a)=gcd(-a,b)=gcd(|a|,|b|)

公式表述

gcd(a,b)=gcd(b,a mod b)

证明:a可以表示成a = kb + r,则r = a mod b

假设d是a,b的一个公约数,则有

d|a, d|b,而r = a - kb,因此d|r

因此d是(b,a mod b)的公约数

假设d 是(b,a mod b)的公约数,则

d | b , d |r ,但是a = kb +r

因此d也是(a,b)的公约数

因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证。

C++语言实现


int gcd(int a,int b){

    return b? gcd(b,a%b):a;

}


扩展欧几里得算法

对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在无数组整

数对 x,y ,使得 gcd(a,b)=ax+by。

c++语言实现


int exgcd(int m,int n,int &x,int &y){

    if(n==0){

        if(n==0){

            x=1,y=0;

            return m;

        }

        int r=exgcd(b,a%b,y,x);

        y-= m/n*x;

        return r;

}


求解 x,y的方法的理解

设 a>b。

1,显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;

2,a>b>0 时

设 ax1+ by1= gcd(a,b);

bx2+ (a mod b)y2= gcd(b,a mod b);

根据朴素的欧几里德原理有 gcd(a,b) = gcd(b,a mod b);

则:ax1+ by1= bx2+ (a mod b)y2;

即:ax1+ by1= bx2+ (a - [a / b] * b)y2=ay2+ bx2- [a / b] * by2;

也就是ax1+ by1 == ay2+ b(x2- [a / b] *y2);

根据恒等定理得:x1=y2; y1=x2- [a / b] *y2;

这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.

上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。

你可能感兴趣的:(算法学习(1)----扩展欧几里得算法)