- ng-网关-zuul
给自己做加法
个人java
一般服务的访问ng-》网关-》服务所以通常有一个服务访问的前缀,这个前缀是在ng上配置的,然后接着才是具体服务的url,zuul可以没有前缀,但是zuul决定了跳转的服务。zuul的配置path其实就是寻找到对应的url格式,然后选择选择跳转注意,当出现两个服务器的url前缀一样的时候,path该如何配置呢?答案是zuul从上之下检索url,符合条件就进行跳转。既然访问是根据path进行判断的,那
- TF-IDF:文本挖掘中的关键词提取利器
巷955
tf-idf
引言在自然语言处理(NLP)和文本挖掘中,TF-IDF是一种常用的技术,用于评估一个词在文档中的重要性。它不仅在信息检索领域广泛应用,还在文本分类、关键词提取等任务中发挥着重要作用。本文将详细介绍TF-IDF的原理,并通过一个实际的代码示例来展示如何使用TF-IDF从《红楼梦》中提取核心关键词。1.什么是TF-IDF?TF-IDF是一种统计方法,用于评估一个词在文档中的重要性。它由两部分组成:-T
- 深入理解信息检索之BM25算法
Lunar*
算法与优化自然语言处理人工智能
1.BM25算法简介BM25算法,全称为"BestMatching25",是由StephenRobertson和KarenSpärckJones在1990年代初基于早期的概率排名模型(如二元独立检索模型)发展而来。它通过一种概率论的方法来衡量文档与用户查询之间的相关性。2.BM25的核心原理BM25算法的核心在于两个主要的概念:逆文档频率(IDF)和词频(TF)调整。逆文档频率(IDF):IDF用
- Linux内核课程学习心得
萝卜cherish
linux内核分析linux内核学习总结
罗晓波+原创作品转载请注明出处+《Linux内核分析》MOOC课程http://mooc.study.163.com/course/USTC-1000029000不知不觉,八周课程一晃而过,回想起当初选择这门课到学习完最后一个课件,也是一个习惯的养成了,到现在我倒是习惯性地在周五和周日上一下课程主页,不过在这八周的线上课程学习中,我还是有所收获的,下面把我的一点小感想分享一下吧。课程第一周,通过一
- 渗透学习笔记(四)window基础2
nnnimok
学习笔记
声明!学习视频来自B站up主**泷羽sec**有兴趣的师傅可以关注一下,如涉及侵权马上删除文章,笔记只是方便各位师傅的学习和探讨,文章所提到的网站以及内容,只做学习交流,其他均与本人以及泷羽sec团队无关,切勿触碰法律底线,否则后果自负!!!!有兴趣的小伙伴可以点击下面连接进入b站主页[B站泷羽sec](https://space.bilibili.com/350329294)五、Windows网
- AI学习指南RAG篇(5)-RAG的系统架构
俞兆鹏
AI学习指南ai
文章目录一、引言二、RAG系统的四个核心组件1.知识库处理模块1.1文档收集1.2文档预处理1.3示例代码2.向量化模块2.1文本嵌入2.2向量数据库2.3示例代码3.检索引擎3.1检索算法3.2检索结果排序3.3示例代码4.生成模块4.1生成模型4.2提示工程4.3示例代码三、RAG系统的架构图四、总结一、引言RAG(Retrieval-AugmentedGeneration,检索增强生成)技术
- Python 爬虫基础教程
盛子涵666
python爬虫开发语言
爬虫的背景与应用诞生爬虫(WebCrawling)是自动化程序,用于从互联网上获取信息。爬虫的基本任务是自动访问网站,通过抓取网页内容并提取有用数据来构建数据库、索引或者进行进一步的数据分析。爬虫通常会模拟浏览器的行为,以避免被服务器识别为机器人,并且能够在大规模范围内高效地抓取信息。爬虫技术最早由搜索引擎开发者提出,目的是自动收集网页信息并将其索引,便于用户搜索时快速检索相关内容。随着互联网的快
- 【GPT入门】第16课 RAG入门
*星星之火*
大模型gpt
【GPT入门】第16课RAG入门1.RAG概念核心原理主要应用优势挑战RGA工作图解2.RAG系统基本搭建流程1.RAG概念RAG通常指检索增强生成(Retrieval-AugmentedGeneration),是一种将检索技术与生成式人工智能相结合的技术架构,以下是关于它的详细介绍:核心原理检索:RAG会在大量的文本数据中进行检索,这些数据可以是网页、文档、知识库等。它通过各种检索算法和技术,快
- 利用 DeepSeek 总结运维知识库的总结报告
缘来是黎
webankpython
一、背景在运维工作中,知识库是重要的知识沉淀与共享工具。随着公司业务的发展,运维涉及的系统、设备和技术日益复杂,原有的运维知识库内容繁杂、缺乏条理,难以高效检索和利用。为了提升知识库的可用性,我尝试借助DeepSeek这一强大的AI工具对其进行总结与优化。二、问题分析知识碎片化:原知识库中的知识分散在不同文档和记录中,缺乏统一的组织架构,导致查找特定知识时需要耗费大量时间。分类不清晰:知识分类不够
- LangChain实战:利用LangChain SQL Agent和GPT进行文档分析和交互
AGI八零后
langchainsqlgpt
我最近接触到一个非常有趣的挑战,涉及到人工智能数字化大量文件的能力,并使用户可以在这些文件上提出复杂的与数据相关的问题,比如:数据检索问题:涉及从数据库中获取特定数据点或数据集,例如“电子产品类别中有多少产品?”或“2021年第四季度总销售额是多少?”汇总查询:需要对数据进行总结的问题,如计算平均值、求和、计数等,例如“所有已上架产品的平均价格是多少?”或“每个地区客户的总人数是多少?”数据关系探
- 从零开始:基于LLM大模型构建智能应用程序的完整指南
AI天才研究院
ChatGPT人工智能
目录从零开始:基于LLM大模型构建智能应用程序的完整指南什么是LLM大模型如何利用LLM大模型构建智能应用程序1.收集和准备数据2.构建LLM大模型3.集成和部署4.监测和维护使用特定于私有领域的数据增强LLM检索增强生成(RAG)数据预处理、分块和检索技术零射击与少量射击提示和指导LLM大模型使用LLM进行推荐和聚类任务改善组织内的搜索体验考虑以上所有解锁的利基应用程序参考最近,围绕大型语言模型
- 机器学习算法在司法预测中的应用【附保姆级代码】
一键难忘
机器学习算法人工智能
本文收录于专栏:精通AI实战千例专栏合集https://blog.csdn.net/weixin_52908342/category_11863492.html从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。每一个案例都附带关键代码,详细讲解供大家学习,希望可以帮到大家。正在不断更新中~机器学习算法在司法预测中的应用司法预测作为法律领域的前沿研究
- 【大模型新书】基于RAG的生成式AI:使用LlamaIndex、Deep Lake和Pinecone构建自定义的检索增强生成管道
AI大模型-大飞
人工智能大模型学习AI产品经理语言模型大模型RAG大模型教程
书籍简介最小化AI幻觉,构建准确的自定义生成式AI管道,利用嵌入式向量数据库和集成的人类反馈来实现检索增强生成(RAG)购买本书的纸质版或Kindle版即包含免费的PDF格式电子书主要特点实现RAG的可追溯输出,将每个响应与其源文档链接,构建可靠的多模态对话智能体在管道中集成RAG、实时人类反馈改进和知识图谱,交付准确的生成式AI模型在动态检索数据集与微调静态数据之间平衡成本与性能书籍描述基于RA
- Activeloop Deep Lake: AI时代的数据湖解决方案
HGWAcsdgvs
人工智能python
技术背景介绍在当前AI技术蓬勃发展的背景下,数据的存储和检索显得尤为重要。ActiveloopDeepLake是一种多模态向量存储解决方案,支持嵌入和元数据(如文本、Json、图像、音频、视频等)的存储。它适用于本地、云端或Activeloop存储,通过嵌入以及其属性进行混合搜索。该解决方案是一个无服务器的数据湖,具备版本控制、查询引擎和深度学习框架的流媒体数据加载器。核心原理解析DeepLake
- 大模型赋能智慧司法,创业者如何推动法律服务普惠化?
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
大模型,智慧司法,法律服务,普惠化,人工智能,自然语言处理,法律科技1.背景介绍近年来,人工智能(AI)技术蓬勃发展,特别是大模型的涌现,为各行各业带来了革命性的变革。其中,智慧司法领域展现出巨大的潜力,大模型能够有效提升法律服务效率,降低法律服务门槛,推动法律服务普惠化。传统法律服务模式面临着诸多挑战:服务成本高昂:律师咨询和诉讼费用对普通民众来说往往难以负担。服务效率低下:法律文件审查、合同分
- AI编程方法第二弹:边提问边调整
leeshuqing
AI编程AI编程
AI编程的提问词非常类似于传统搜索引擎中的检索词,虽然采取了自然语言表示,但是在获取结果的策略上却很一致。因为用户在一开始可能并不非常清楚AI编程工具如何理解用户的提问,因此输出结果可能并不能完全满足用户要求,此时用户可以不断的根据生成结果,动态的灵活的调整提问,使之不断趋近于自己满意的结果。比如,对于“Python”等任意英文单词,允许用户指定总宽度后,通过自动填充空格,使之总宽度尽可能等于该宽
- ClickHouse优化技巧实战指南:从原理到案例解析
AAEllisonPang
Clickhouseclickhouse
目录ClickHouse优化核心思想表结构设计优化查询性能优化技巧数据写入优化方案系统配置调优实战高可用与集群优化真实案例解析总结与建议1.ClickHouse优化核心思想ClickHouse作为OLAP领域的明星引擎,其优化需遵循列式存储特性,把握以下原则:批量操作优于单行处理预计算替代实时计算数据有序存储提升检索效率利用硬件资源最大化吞吐量2.表结构设计优化2.1分区键选择选择低基数且高频过滤
- 纯前端全文检索的两种实现方案:ElasticLunr.js 和 libsearch
传而习乎
前端全文检索javascript
纯前端全文检索的两种实现方案:ElasticLunr.js和libsearch在前端开发中,实现全文检索功能可以显著提升用户体验,尤其是在处理大量文本数据时。本文将介绍两种流行的纯前端全文检索方案:ElasticLunr.js和libsearch。这两种方案各有特点,适用于不同的场景。1.使用ElasticLunr.js实现纯前端全文检索方案特点基于Lunr.js的扩展:支持字段搜索、查询时加权和
- 0312-PromptMRG:诊断驱动的医疗报告生成提示
m0_65156252
学习笔记
1,摘要:提出了诊断驱动的医疗报告生成提示(PromptMRG),这是一个新的框架,旨在通过诊断感知提示的指导提高MRG的诊断准确性。具体来说,PromptMRG是基于编码器-解码器架构,并带有一个额外的疾病分类分支。在生成报告时,来自分类分支的诊断结果将被转换为令牌提示,以显式地指导生成过程。为了进一步提高诊断准确性,我们设计了跨模态特征增强,通过利用预训练CLIP的知识,从数据库中检索相似的报
- 支持 40+ 插件,Spring AI Alibaba 简化智能体私有数据集成
阿里云云原生
人工智能spring数据挖掘
作者:张震霆&何裕墙,SpringAIAlibabaContributor在AI智能体(AIAgent)开发的过程中,RAG(Retrieval-AugmentedGeneration)和ToolCalling已经成为两种至关重要的模式。RAG通过结合检索技术和生成模型的强大能力,使智能体能够实时从外部数据源获取信息,并在生成过程中增强其知识深度和推理能力。通过这种方式,智能体不仅能依赖于模型的预
- Django REST Framework 中 ModelViewSet 的接口方法及参数详解,继承的方法和核心类方法,常用查询方法接口
coderZT
djangopython后端
第一部分(ModelViewSet)一、ModelViewSet的继承结构ModelViewSet继承自以下类:ModelViewSet=(CreateModelMixin+#创建RetrieveModelMixin+#检索单个UpdateModelMixin+#更新DestroyModelMixin+#删除ListModelMixin+#列表GenericViewSet#基础视图集)二、默认接口
- 附原文 |《2024年漏洞与威胁趋势报告》深度解读
漏洞
在信息技术飞速发展的当下,网络安全已然成为全球瞩目的焦点。安全极客社区精心译制的《2024年漏洞与威胁趋势报告》明确指出,2023年堪称网络安全领域的重要分水岭。这一年,新发现漏洞的数量出现了前所未有的增长态势,其中高危或严重级别的漏洞占比高达一半,漏洞利用的时间线显著缩短,然而平均修复时间却过长。金融服务、制造业以及公用事业等行业面临的网络威胁愈发严峻,首席信息安全官所承担的法律责任也日益加重。
- 相同的问题看看Grok3怎么回答-Dify、RAG-Flow、FastGPT 核心特点对比
释迦呼呼
AI一千问人工智能深度学习机器学习自然语言处理算法
关键要点研究表明,Dify、RAG-Flow和FastGPT都是开源平台,专注于AI应用开发,特别是涉及RAG(检索增强生成)和知识库的场景。证据倾向于认为,Dify更通用,适合广泛的AI应用开发;RAG-Flow专注于深度文档理解的RAG引擎;FastGPT强调视觉工作流,适合构建知识库和问答系统。它们的区别在于平台类型、核心功能和目标用户,存在一些争议,如代理能力或文档处理复杂性。Dify、R
- 字典树(Trie) 理论知识复习及精选例题解析
BrainWen1
算法javac++数据结构pythonleetcodevscode
字典树理论知识复习及精选例题解析一、字典树理论知识二、精选例题解析例题1.P8306【模板】字典树例题2.P2580于是他错误的点名开始了例题3.P10471最大异或对TheXORLargestPair三、字典树的使用思路和细节使用思路细节注意四、总结一、字典树理论知识1.定义字典树(Trie)字典树(Trie)字典树(Trie),又称前缀树,是一种树形数据结构,用于高效地存储和检索字符串集合。它
- 从公布的11批其他算法类别分析
老赵聊算法、大模型备案
人工智能机器人算法AIGC语言模型
2025年3月12日,国家网信办分别发布了深度合成算法及互联网信息服务算法备案信息(其他类别算法)的公告,其中深度合成算法3月份批次通过共计395款,其他算法种类通过45款。具体分析如下:一、算法类别:序号算法类别数量占比1个性化推送类31749%2检索过滤类20431.53%3排序精选类578.81%4调度决策类599.12%5生成合成类101.55合计jxh152637647100%从算法类别
- Deepsearch 、Rag 、RraphRag
kse_music
混杂raggraphragdeepsearch
文章目录前言一、Ai-Search1.DeepSearch2.RAG(Retrieval-AugmentedGeneration)3.GraphRAG(Graph-basedRetrieval-AugmentedGeneration)二、选择指南三、结合应用总结前言DeepSearch、RAG(Retrieval-AugmentedGeneration)和GraphRAG这三种技术在智能检索、信息
- 【爬虫实战】python入门爬取猫眼电影排行
进击的C语言
爬虫自动化网络
爬虫爬虫概述应用场景:1、抓取特定网站或应用的内容,提取出有价值的信息。2、模拟用户在浏览器或应用中的操作,实现自动化流程。爬虫是什么专业术语:网络爬虫(又称网页蜘蛛、网络机器人)网络爬虫是一种自动按照特定规则抓取网页信息的程序或脚本。爬虫起源随着网络的迅猛发展,万维网成为海量信息的载体,如何有效地提取和利用这些信息成为一项巨大挑战。搜索引擎如Yahoo、Google、百度等,作为帮助人们检索信息
- RAG(检索增强生成)系统实践与调优
python_知世
android金融自然语言处理大模型技术人工智能RAG大模型
在人工智能领域,检索增强生成(RetrievalAugmentedGeneration,RAG)是一种结合信息检索和生成式人工智能的技术,它通过从外部数据源中检索相关信息,来辅助大语言模型(LargeLanguageModel,LLM)生成更为准确、上下文相关的答案。1什么是RAG检索增强生成(RetrievalAugmentedGeneration,RAG)是一种结合信息检索和生成式人工智能的技
- CSDN帐号管理规范
CSDN官方博客
产品公告用户运营
第一章、概述1、目的为保障北京创新乐知网络技术有限公司及其关联公司(以下简称“CSDN”)业务健康可持续发展,维护CSDN正常运营秩序,规范CSDN帐号的使用者(以下简称“用户”)行为,保障产品用户体验,整体提升CSDN环境,履行CSDN应尽义务,根据现行法律、行政法规、部门规章及有关规定,以及《CSDN用户服务条款》等规则与协议,特制定本规范。本规范被视为《CSDN用户服务条款》的补充协议,是其
- 使用LLMRails构建增强型AI应用:从文档检索到语义查询
VYSAHF
人工智能python
使用LLMRails构建增强型AI应用:从文档检索到语义查询在构建生成式AI应用时,文档的索引和查询是其中的重要环节。LLMRails提供了一个便捷的API平台,专注于高性能和高准确度的文档处理。本文将详细介绍如何利用LLMRails和LangChain实现这一功能。技术背景介绍LLMRails是一个提供文档索引和查询的API平台,优化了性能和准确度。通过与LangChain的集成,LLMRail
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象