- 餐饮行业如何做私域流量,这里有妙招(建议收藏)
javascript
在数字化浪潮下,餐饮行业的竞争愈发激烈。私域流量的构建和管理成为企业提升品牌影响力、增强客户黏性、提高营业额的重要途径。而数据作为21世纪的“石油”,其价值在私域流量的运营中更是不可忽视。本文将重点探讨如何从挖掘数据价值的角度,助力餐饮企业做好私域流量。一、数据驱动的客户洞察数据是了解客户需求、喜好和消费习惯的窗口。通过收集和分析客户的行为数据、消费数据、反馈数据等,企业可以构建更精准的客户画像,
- YOLOv9改进,YOLOv9检测头融合ASFF(自适应空间特征融合),全网首发
挂科边缘
YOLOv9改进YOLO目标检测人工智能深度学习计算机视觉
摘要一种新颖的数据驱动的金字塔特征融合策略,称为自适应空间特征融合(ASFF)。它学习了在空间上过滤冲突信息以抑制不一致的方法,从而提高了特征的尺度不变性,并引入了几乎免费的推理开销。#理论介绍目标检测在处理不同尺度的目标时,常采用特征金字塔结构。然而,这种金字塔结构在单步检测器中存在尺度不一致性问题,即不同尺度的特征层在检测过程中可能产生冲突,导致精度下降。ASFF方法通过学习每个尺度特征的自适
- 备份与恢复管理系统深度解析及代码实践
我的运维人生
服务器linux运维运维开发技术共享
备份与恢复管理系统深度解析及代码实践在现代数据驱动的世界中,数据备份与恢复管理系统的重要性不言而喻。无论是面对硬件故障、软件崩溃、自然灾害还是人为误操作,有效的备份与恢复策略都是企业保障数据安全、减少业务中断风险的关键。本文将深入探讨备份与恢复的基本概念、类型、策略,并结合代码示例展示实际操作。一、备份与恢复的基本概念备份是指按照预定的规则,周期性地将业务数据制作成一份或多份拷贝,并存放于专门的备
- Amazon ECS 批处理参考架构:高效处理大规模数据
芮逸炯Conqueror
AmazonECS批处理参考架构:高效处理大规模数据ecs-refarch-batch-processingAreferencearchitectureforhandlingbatchprocessingworkloadsusingAmazonECS.项目地址:https://gitcode.com/gh_mirrors/ec/ecs-refarch-batch-processing在当今数据驱动
- AI DMP 数据基建:构建数据驱动的营销生态
AGI大模型与大数据研究院
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AIDMP数据基建:构建数据驱动的营销生态作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍在数字化转型的今天,数据已然成为企业最宝贵的资产之一。然而,如何有效地收集、存储、处理和应用这些数据,以实现真正的数据驱动决策,仍然是企业面临的挑战。本文将聚焦于数据管理平台(DataManagementPlatform,DMP),探讨如何通过构建数
- 高效处理大规模数据:MATLAB实践指南
原机小子
matlab信息可视化数据分析
在当今的数据驱动世界中,处理大规模数据集是科研和工程领域常见的挑战。MATLAB,作为一种高级数学软件,提供了一系列的工具和函数,使得大规模数据处理变得可行和高效。本文将介绍如何在MATLAB中进行大规模数据处理,包括数据导入、预处理、分析和可视化,并提供相应的代码示例。1.数据导入处理大规模数据的第一步是将数据导入MATLAB。MATLAB支持多种数据源,包括文本文件、Excel文件、数据库等。
- 都是基于.NET平台,WPF能取代Winform吗?
zls365365
java编程语言python人工智能移动开发
学Winform还是WPF?很多winform的学者时常在我的技术群咨询要不要学习WPF?我一贯的观点是必须学啊!如果是搞工控做cs软件开发,WPF自然是首选。WPF优势在哪里?①前后端分离:WPF是数据驱动的而非Winform的事件驱动,可以通过属性bing的方式实现界面的数据更新,这样就可以很好地实现前后台的分离,在大型的开发项目中,后端开发人员只用编写VM相关的逻辑,界面视图部分可以去交给美
- 掌握高级 SQL 技巧:高效处理复杂数据查询和优化(附原始代码)
一ge科研小菜鸡
大数据sql
引言在数据驱动的时代,SQL(结构化查询语言)是数据库管理和数据分析中不可或缺的工具。随着数据复杂度和数据量的增加,掌握SQL的高级技巧不仅能帮助我们高效处理复杂的数据查询,还能极大地提高数据库的性能和数据处理效率。本文将从窗口函数、递归查询、子查询优化、索引管理、数据透视表到复杂聚合和分组等方面,深入探讨一些常见的高级SQL技巧,帮助大家在实际工作中优化SQL查询,提高数据处理的准确性和效率。一
- 利用唯品会商品数据API接口实现高效商品详情关键词搜索
技术猿18870278351
唯品会API数据库
在当今电商繁荣的时代,数据驱动营销已成为商家提升竞争力的关键手段。唯品会作为国内知名的特卖电商平台,拥有海量商品数据和活跃用户群体。为了帮助商家和开发者更高效地获取和利用唯品会上的商品信息,唯品会提供了商品数据API接口,使得通过关键词搜索商品详情成为可能。本文将详细介绍如何利用唯品会商品数据API接口,以标题、主图、SKU、价格、优惠价、掌柜昵称、店铺链接、店铺所在地等关键信息为核心,实现精准的
- 推荐开源项目:WeDataSphere - 智慧数据服务平台
劳泉文Luna
推荐开源项目:WeDataSphere-智慧数据服务平台去发现同类优质开源项目:https://gitcode.com/是一款由微众银行金融科技团队开发的开源大数据处理和应用框架,旨在简化数据分析流程,提高数据驱动决策的效率。该项目将复杂的数据集成、治理、分析和应用任务封装为模块化服务,让用户可以更加专注于业务逻辑,而非底层数据处理的技术细节。技术解析模块化设计:WeDataSphere提供了一套
- 数据洞察力:CRM如何驱动客户理解和业务增长
CC_54321
人工智能大数据
在数据驱动的商业时代,客户关系管理(CRM)系统不仅仅是一个存储客户信息的工具,它更是企业获取客户洞察、优化客户体验和提升业务绩效的关键。本文将探讨CRM在客户洞察方面的作用,以及如何利用这些洞察来推动企业的增长。1.客户洞察的重要性客户洞察是指通过分析客户数据来理解客户的需求、行为和偏好。这些洞察可以帮助企业做出更精准的市场定位,制定更有效的营销策略,以及提供更个性化的客户服务。在CRM系统中,
- 请问Python怎么安装vlfeat?
cda2024
python开发语言
在当今数据驱动的时代,图像处理和计算机视觉成为了许多前沿应用的核心技术之一。作为一门强大的编程语言,Python在这些领域中扮演着极其重要的角色。而vlfeat是一个广泛使用的计算机视觉库,它提供了许多经典的计算机视觉算法实现,如SIFT、HOG等。本文将详细介绍如何在Python中安装和使用vlfeat,帮助你在项目中高效地集成这些强大的工具。什么是vlfeat?vlfeat是一个开源的计算机视
- 效率提升70%,迁移时间减半!Denodo平台破解数据编织部署5大难题
Denodo
大数据数据库人工智能数据分析数据仓库数据编织数据库架构
在如今数据驱动的时代,数据编织已逐步成为企业数据管理的关键技术。无论是每天处理数百次查询的小规模部署,还是涉及数百名开发人员、数千次查询并且需要同时监控多个环境的大规模部署,管理数据编织部署都面临着一系列挑战。本文将深度解析如何利用Denodo平台的强大功能,帮助企业高效应对这些挑战,并确保数据编织部署的顺利实施。一、数据编织部署的5大常见挑战多团队协作冲突在大型项目中,不同开发团队可能同时修改相
- 【鸿蒙生态学堂 07】冷启动优化、合理使用动画、长列表加载性能优化最佳实践
harmonyos
课程简介本课程是【HarmonyOS生态学堂】的第7课。本课程深入探讨HarmonyOS应用的冷启动优化技巧,从应用冷启动概述到具体实施策略,提供全面的优化方案。课程内容包括合理使用动画提升用户感知流畅度、数据驱动UI更新机制、以及长列表加载性能优化的最佳实践。你将学习到如何通过懒加载、缓存列表项、组件复用和布局优化等技术手段,有效提高冷启动速度,减少用户等待时间,从而打造更流畅、更高效的Harm
- 【鸿蒙生态学堂 05】ArkUI开发基础(下)
harmonyos
课程简介本课程是【HarmonyOS生态学堂】的第5课。本课程深入探讨HarmonyOS的ArkUI框架,特别是数据驱动UI更新和组件导航的高级概念。您将学习如何使用ArkWeb技术构建动态网页内容,掌握数据绑定技巧以确保UI与底层数据源同步更新。此外,课程将指导您通过设置组件导航来增强应用的用户体验,实现流畅的页面过渡和有效的用户交互。标签使用ArkWeb构建页面数据驱动UI更新设置组件导航观看
- 第21篇:python编程进阶:python数据库基础详解
猿享天开
python从入门到精通python数据库开发语言
第21篇:数据库基础内容简介在现代应用开发中,数据库是存储和管理数据的核心组件。本篇文章将介绍关系型数据库与非关系型数据库的基本概念和区别,深入探讨SQL的基础知识,并展示如何使用Python连接和操作常见的数据库系统,如MySQL和PostgreSQL。通过理论与实践相结合的方式,您将全面掌握数据库的基本原理和实际应用技能,为构建高效、可靠的数据驱动型应用打下坚实的基础。目录数据库概述什么是数据
- MongoDB 数据库备份和恢复全攻略
翻晒时光
数据库数据库mongodb
在当今数据驱动的时代,数据库的稳定运行和数据安全至关重要。MongoDB作为一款流行的NoSQL数据库,以其灵活的文档模型和高扩展性备受青睐。然而,无论数据库多么强大,数据丢失的风险始终存在,因此掌握MongoDB的备份和恢复方法是数据库管理的关键环节。本文将深入探讨MongoDB的备份和恢复策略,帮助你更好地保护数据资产。一、备份的重要性数据丢失可能由多种原因导致,如硬件故障、软件错误、人为误操
- 深度ResUnet与ResUnet++:新一代的语义分割神器
倪澄莹George
深度ResUnet与ResUnet++:新一代的语义分割神器去发现同类优质开源项目:https://gitcode.com/在这个数据驱动的时代,深度学习模型在图像处理领域展现出了强大的潜力,尤其是在语义分割任务中。今天,我们向您推荐一个基于PyTorch实现的开源项目——DeepResUnet和ResUnet++。这两个模型源自于学术界的最新研究,旨在提高图像分割的准确性和效率。项目介绍这个开源
- Vue.js组件开发详解
小俊学长
vue.jsflutter前端
Vue.js组件开发详解Vue.js是一个用于构建用户界面的渐进式框架,其核心思想是通过数据驱动视图的变化,同时提供了一系列强大的工具来帮助开发者高效地开发复杂的单页应用。在Vue.js中,组件是构建复杂应用的基本单元,通过组件化开发,我们可以将应用拆分成可复用的、独立的模块,从而提高开发效率和代码的可维护性。本文将详细讲解Vue.js组件的开发过程,从基础概念到高级技巧,全面覆盖组件开发的各个方
- 元数据驱动的设想
吾爱乐享
pythonpython
本文永久更新地址:1.背景针对相似结构的表单,为了提高ui自动化编写效率,减少以减少重复工作,设想是否可以设计一个针对neoUI2.0通过元数据驱动的方式适应不同业务对象的测试框架2.设计元数据模型-字段名-字段类型-是否必填-是否只读-默认值-业务逻辑(可选,后期扩展)3.构建自动化测试框架利用现有的RF框架已实现的功能,通过实体名称打开对应实体的表单关键L进入【进入菜单】关键字进入【点击新建业
- kaggle上面有哪些适合机器学习新手的比赛和项目
xiamu_CDA
机器学习人工智能
Kaggle上面有哪些适合机器学习新手的比赛和项目?在当今数据驱动的时代,机器学习已经成为一门炙手可热的技能。Kaggle作为全球最大的数据科学竞赛平台,不仅汇聚了众多顶尖的数据科学家和机器学习工程师,也为初学者提供了丰富的学习资源和实战机会。对于机器学习新手来说,选择合适的比赛和项目是至关重要的第一步。本文将为你推荐一些适合新手的Kaggle比赛和项目,并提供一些实用的建议,帮助你在机器学习的道
- MySQL、PostgreSQL 和 Microsoft SQL Server:谁是王者?
cda2024
mysqlpostgresqlmicrosoft
在当今数据驱动的时代,选择合适的数据库系统对于企业的成功至关重要。MySQL、PostgreSQL和MicrosoftSQLServer是目前市场上最受欢迎的三种关系型数据库管理系统(RDBMS)。每种数据库都有其独特的优势和适用场景,但究竟哪一种更适合你的业务需求呢?本文将从多个维度对这三种数据库进行对比,帮助你做出明智的选择。1.性能1.1MySQLMySQL是一款开源数据库,以其高性能和易用
- AI人工智能代理工作流 AI Agent WorkFlow:在金融领域中的应用
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能代理工作流AIAgentWorkFlow:在金融领域中的应用作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:AIAgentWorkFlow,金融风险管理,自动化投资决策,数据驱动策略生成,量化交易系统1.背景介绍1.1问题的由来随着金融市场全球化和技术的飞速发展,金融机构面临着日益复杂的业务挑战。从风险管理和投资决策到客户关系管理
- 【杂谈】-为什么Python是AI的首选语言
视觉与物联智能
杂谈python人工智能开发语言深度学习机器学习
为什么Python是AI的首选语言文章目录为什么Python是AI的首选语言1、为何Python引领人工智能发展1.1可用性和生态系统1.2用户群和用例1.3效率辅助2、AI项目对Python开发人员的要求3、如何开启你的AI学习之旅人工智能的广泛应用正在软件工程领域引发范式转变。Python凭借其易用性、成熟的生态系统以及满足人工智能和机器学习(ML)工作流数据驱动需求的能力,迅速成为人工智能开
- YOLOv10改进,YOLOv10添加ASFF检测头(自适应空间特征融合),添加小目标检测层(四头检测)+CA注意机制,全网首发
挂科边缘
YOLOv10改进YOLO目标检测目标跟踪人工智能计算机视觉深度学习
摘要一种新颖的数据驱动的金字塔特征融合策略,称为自适应空间特征融合(ASFF)。它学习了在空间上过滤冲突信息以抑制不一致的方法,从而提高了特征的尺度不变性,并引入了几乎免费的推理开销。#理论介绍目标检测在处理不同尺度的目标时,常采用特征金字塔结构。然而,这种金字塔结构在单步检测器中存在尺度不一致性问题,即不同尺度的特征层在检测过程中可能产生冲突,导致精度下降。ASFF方法通过学习每个尺度特征的自适
- 新质生产力与核心竞争力提升
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
新质生产力、人工智能、机器学习、深度学习、算法优化、数据驱动、核心竞争力、数字化转型1.背景介绍在当今数字化时代,科技创新正以惊人的速度推动着社会发展。人工智能(AI)作为科技发展的重要驱动力,正在深刻地改变着生产方式和生活方式。从自动驾驶汽车到智能语音助手,从个性化推荐系统到医疗诊断辅助,AI技术的应用场景日益广泛,为人类社会带来了前所未有的机遇。然而,AI技术的应用并非一帆风顺。如何有效地利用
- 使用 pgvector 实现 PostgreSQL 语义搜索和 RAG:完整指南
m0_74825260
面试学习路线阿里巴巴postgresql数据库
使用pgvector实现PostgreSQL语义搜索和RAG:完整指南1.引言在当今的数据驱动世界中,能够高效地搜索和检索相关信息变得越来越重要。传统的关系型数据库虽然在结构化数据管理方面表现出色,但在处理非结构化数据和语义搜索时往往力不从心。本文将介绍如何使用pgvector扩展来增强PostgreSQL数据库,实现语义搜索和检索增强生成(RAG)功能,从而大大提升数据检索的效率和准确性。2.p
- 第17篇:python进阶:详解数据分析与处理
猿享天开
python从入门到精通python开发语言
第17篇:数据分析与处理内容简介本篇文章将深入探讨数据分析与处理在Python中的应用。您将学习如何使用pandas库进行数据清洗与分析,掌握matplotlib和seaborn库进行数据可视化,以及处理大型数据集的技巧。通过丰富的代码示例和实战案例,您将能够高效地进行数据处理、分析和可视化,为数据驱动的决策提供有力支持。目录数据分析与处理概述什么是数据分析与处理数据分析的流程使用pandas进行
- 大模型GUI系列论文阅读 DAY2续2:《使用指令微调基础模型的多模态网页导航》
feifeikon
论文阅读
摘要自主网页导航的进展一直受到以下因素的阻碍:依赖于数十亿次的探索性交互(通常采用在线强化学习),依赖于特定领域的模型设计,难以利用丰富的跨领域数据进行泛化。在本研究中,我们探讨了基于视觉-语言基础模型的数据驱动离线训练方法,以改进网页代理的性能。我们提出了一种名为WebGUM的指令跟随多模态代理,该代理能够同时观察网页截图和HTML页面,并输出网页导航操作,例如点击和输入文本等。WebGUM通过
- GBase 数据库的性能调优与故障排查
big crab
数据库
一、引言在现代企业的数据驱动运营中,数据库的性能是核心问题之一。GBase数据库作为高性能、高可用的数据库解决方案,被广泛应用于大数据、高并发的场景中。为了最大化GBase数据库的性能,了解如何调优数据库的配置、查询执行计划和硬件资源使用至关重要。本文将深入探讨GBase数据库的性能调优策略、常见故障排查方法,并结合SQL示例和调优技巧,帮助开发者和数据库管理员提升GBase数据库的整体效率。二、
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,