简介
我们知道,Android应用主要是由4大组件构成。当我们进行组件间通讯时,由于位于不同的组件,通信方式相对麻烦。基于此,EventBus便油然而生。通过EventBus,我们可以很轻松的进行组件间通信。
使用方法
EventBus in 3 steps
Define events:
public static class MessageEvent { /* Additional fields if needed */ }
Prepare subscribers: Declare and annotate your subscribing method, optionally specify a thread mode:
@Subscribe(threadMode = ThreadMode.MAIN)
public void onMessageEvent(MessageEvent event) {/* Do something */};
Register and unregister your subscriber. For example on Android, activities and fragments should usually register according to their life cycle:
@Override
public void onStart() {
super.onStart();
EventBus.getDefault().register(this);
}
@Override
public void onStop() {
super.onStop();
EventBus.getDefault().unregister(this);
}
Post events:
EventBus.getDefault().post(new MessageEvent());
Read the full getting started guide.
源码解析
EventBus的使用,无外乎主要就是订阅,事件发送和解除订阅3大步骤,那么源码解析我们也从这3个方面进行入手。
(1). 订阅
使用EventBus时,第一步肯定是先进行注册,通常使用的就是:
EventBus.getDefault().register(this);
那我们就先来看下:EventBus.getDefault()
public EventBus() {
this(DEFAULT_BUILDER);
}
/** Convenience singleton for apps using a process-wide EventBus instance. */
public static EventBus getDefault() {
if (defaultInstance == null) {
synchronized (EventBus.class) {
if (defaultInstance == null) {
defaultInstance = new EventBus();
}
}
}
return defaultInstance;
}
可以看到,getDefault()其实就是用的双重锁校验来实现一个单例EventBus,但是跟普通的单例模式不同的是,EventBus的默认构造函数确是public的,其实这里的public是有深层含义的,当我们使用getDefault()时获取的EventBus,只是一条事件总线,如果我们想构造多条事件总线,那么我们就可以直接实例化EventBus即可。
接下来我们来看下EventBus的注册过程:
/**
* Registers the given subscriber to receive events. Subscribers must call {@link #unregister(Object)} once they
* are no longer interested in receiving events.
*
* Subscribers have event handling methods that must be annotated by {@link Subscribe}.
* The {@link Subscribe} annotation also allows configuration like {@link
* ThreadMode} and priority.
*/
public void register(Object subscriber) {
Class> subscriberClass = subscriber.getClass();
//找到subscriber源文件(及其父类)中注册的事件方法
List subscriberMethods = subscriberMethodFinder.findSubscriberMethods(subscriberClass);
synchronized (this) {
for (SubscriberMethod subscriberMethod : subscriberMethods) {
//按事件将所有的subscirber记录下来,并依据priority进行排序,
// 如果是sticky事件,则从粘性记录中查找是否前面已经分发了该事件通知,
// 如果是,则立即调用该subscriber的subscriberMethod。
subscribe(subscriber, subscriberMethod);
}
}
}
从register源代码可以看到,注册过程主要分为2个步骤:
1.通过findSubscriberMethods()方法,就可以找到对应subscriber中注册的事件方法;
2.subscribe()过程,记录subscriber并排序,对注册者进行粘性事件调用···
那首先,我们先分析下findSubscriberMethods(),其具体的查找过程如下:
List findSubscriberMethods(Class> subscriberClass) {
List subscriberMethods = METHOD_CACHE.get(subscriberClass);
if (subscriberMethods != null) {
return subscriberMethods;
}
//是否忽略从注解器生成的MyEventBusIndex类获取事件方法,默认为false
if (ignoreGeneratedIndex) {
subscriberMethods = findUsingReflection(subscriberClass);
} else {
subscriberMethods = findUsingInfo(subscriberClass);
}
if (subscriberMethods.isEmpty()) {
throw new EventBusException("Subscriber " + subscriberClass
+ " and its super classes have no public methods with the @Subscribe annotation");
} else {
//将subscriberClass类(连同父类)对应的@Subscribe方法进行缓存
METHOD_CACHE.put(subscriberClass, subscriberMethods);
return subscriberMethods;
}
}
METHOD_CACHE是一个全局静态的ConcurrentHashMap,
private static final Map, List> METHOD_CACHE = new ConcurrentHashMap<>();
从METHOD_CACHE中我们可以得知,它会缓存所有事件总线的所有subscriber对应的所有事件方法。
EventBus3.0相对于之前的版本,性能上有了很大的提升,提升的主要原因就在于事件信息的获取来源:旧版本事件信息都是通过采用反射来获取,而新版本默认是采用编译器注解方式(如果还不清楚注解处理器的内容,可以参考下我之前的简文:注解处理器(Annotation Processor)简析),在编译的时候通过@Subscribe注解获取事件信息,从而在效率上得到很大的提升。
所以,register中,findUsingReflection(subscriberClass)采用的便是运行时反射获取,findUsingInfo(subscriberClass)采用的就是从apt自动生成的MyEventBusIndex类中获取事件信息。
这里,我们就只对findUsingInfo()进行分析:
/**
*
* @param subscriberClass
* @return 获取subscriberClass及其父类的@Subscribe方法
*/
private List findUsingInfo(Class> subscriberClass) {
FindState findState = prepareFindState();
findState.initForSubscriber(subscriberClass);
while (findState.clazz != null) {
//从apt自动生成的MyEventBusIndex类中获取SubscriberInfo
findState.subscriberInfo = getSubscriberInfo(findState);
if (findState.subscriberInfo != null) {
SubscriberMethod[] array = findState.subscriberInfo.getSubscriberMethods();
for (SubscriberMethod subscriberMethod : array) {
if (findState.checkAdd(subscriberMethod.method, subscriberMethod.eventType)) {
findState.subscriberMethods.add(subscriberMethod);
}
}
} else {
findUsingReflectionInSingleClass(findState);
}
findState.moveToSuperclass();
}
return getMethodsAndRelease(findState);
}
这里FindState的设计采用享元模式,避免FindState的频繁创建,具体详情可以查看附录介绍。
void initForSubscriber(Class> subscriberClass) {
this.subscriberClass = clazz = subscriberClass;
skipSuperClasses = false;
subscriberInfo = null;
}
findState.initForSubscriber(subscriberClass)中,我们可以得知findState.subscriberClass = findState.clazz = subscriberClass != null,所以findUsingInfo会进入while循环。进入循环后,这里有一个很重要的动作就是:getSubscriberInfo
private SubscriberInfo getSubscriberInfo(FindState findState) {
···
···
//由EventBusBuillder从apt自动生成的类中获取
if (subscriberInfoIndexes != null) {
for (SubscriberInfoIndex index : subscriberInfoIndexes) {
//取得Subscriber类的相关信息:Subscriber类,@Subscribe相关方法等
SubscriberInfo info = index.getSubscriberInfo(findState.clazz);
if (info != null) {
return info;
}
}
}
return null;
}
//SubscriberMethodFinder
private List subscriberInfoIndexes;
如果subscriberInfoIndexes != null,那么就可以从其得到SubscriberInfo。看到这里,我们就有疑问了,你说subscriberInfoIndexes != null,那么它是在哪被赋值的呀?这里,我们就来回顾一下了,因为subscriberInfoIndexes是SubscriberMethodFinder类的成员变量,所以很自然我们会找一些SubscriberMethodFinder在哪里会对subscriberInfoIndexes进行赋值,
SubscriberMethodFinder(List subscriberInfoIndexes, boolean strictMethodVerification,
boolean ignoreGeneratedIndex) {
this.subscriberInfoIndexes = subscriberInfoIndexes;
this.strictMethodVerification = strictMethodVerification;
this.ignoreGeneratedIndex = ignoreGeneratedIndex;
}
查看后,我们知道SubscriberMethodFinder是在构造函数中对subscriberInfoIndexes进行赋值,那么我们接下来应该寻找的就是SubscriberMethodFinder是在哪里被实例化,还记得我们EventBus.register里面有一句:
subscriberMethodFinder.findSubscriberMethods(subscriberClass);
原来SubscriberMethodFinder的一个实例化就在EventBus中,那么我们就来查看下EventBus具体在哪个地方对其进行创建:
EventBus(EventBusBuilder builder) {
subscriptionsByEventType = new HashMap<>();
typesBySubscriber = new HashMap<>();
stickyEvents = new ConcurrentHashMap<>();
mainThreadPoster = new HandlerPoster(this, Looper.getMainLooper(), 10);
backgroundPoster = new BackgroundPoster(this);
asyncPoster = new AsyncPoster(this);
indexCount = builder.subscriberInfoIndexes != null ? builder.subscriberInfoIndexes.size() : 0;
//index speed
subscriberMethodFinder = new SubscriberMethodFinder(builder.subscriberInfoIndexes,
builder.strictMethodVerification, builder.ignoreGeneratedIndex);
logSubscriberExceptions = builder.logSubscriberExceptions;
logNoSubscriberMessages = builder.logNoSubscriberMessages;
sendSubscriberExceptionEvent = builder.sendSubscriberExceptionEvent;
sendNoSubscriberEvent = builder.sendNoSubscriberEvent;
throwSubscriberException = builder.throwSubscriberException;
eventInheritance = builder.eventInheritance;
executorService = builder.executorService;
}
可以看到,SubscriberMethodFinder是在EventBus构造函数中被实例化的,然后SubscriberMethodFinder.subscriberInfoIndexes指向的是builder.subscriberInfoIndexes,而EventBusBuilder是通过addIndex()对subscriberInfoIndexes进行创建赋值的。
/** Adds an index generated by EventBus' annotation preprocessor. */
public EventBusBuilder addIndex(SubscriberInfoIndex index) {
if(subscriberInfoIndexes == null) {
subscriberInfoIndexes = new ArrayList<>();
}
subscriberInfoIndexes.add(index);
return this;
}
所以,如果想让EventBus从apt中进行数据获取,还要通过显示构建一个EventBusBuilder,并调用
EventBus.builder().addIndex(new MyEventBusIndex()).build()方法进行创建赋值。
具体的做法如下:参考官方文档
现在让我们回到findUsingInfo方法中,如果getSubscriberInfo == null,那么它也会通过反射进行事件信息获取。也就是说,如果你本意想通过apt进行数据获取,但是可能由于不小心缺少了相应步骤配置,导致无法从apt获取,那么,程序会自动采用反射进行获取。结果是可以成功运行的,只是效率低了许多。
现在假设我们成功配置了apt,那么findUsingInfo就会进入下面代码:
while (findState.clazz != null) {
findState.subscriberInfo = getSubscriberInfo(findState);
if (findState.subscriberInfo != null) {
SubscriberMethod[] array = findState.subscriberInfo.getSubscriberMethods();
for (SubscriberMethod subscriberMethod : array) {
if (findState.checkAdd(subscriberMethod.method, subscriberMethod.eventType)) {
findState.subscriberMethods.add(subscriberMethod);
}
}
}
···
findState.moveToSuperclass();
}
这部分代码最终就会获取到subscriberClass及其父类的@Subscribe方法存放到 findState.subscriberMethods中,最终返回给上层调用。
以上,查找事件信息过程就已结束了。
接下来,我们来看下subscribe过程:
/**
*
* @param subscriber
* @param subscriberMethod
* Map, CopyOnWriteArrayList> subscriptionsByEventType;
* subscriptionsByEventType中存储的就是事件对应的监听组信息。
* 由事件获取得到监听组,然后新的subscriber和SubscriberMethod按priority存放进同一event的
* CopyOnWriteArrayList中.
*
* 如果当前的Subscriber事件方法是sticky的,则从stickyEvents记录中查找看是否有与本方法事件
* 相同的事件(即之前已经有组件发送该粘性事件{@link #postSticky(Object)},如果有,则立即
* 调用本方法。
*/
// Must be called in synchronized block
private void subscribe(Object subscriber, SubscriberMethod subscriberMethod) {
Class> eventType = subscriberMethod.eventType;
Subscription newSubscription = new Subscription(subscriber, subscriberMethod);
CopyOnWriteArrayList subscriptions = subscriptionsByEventType.get(eventType);
if (subscriptions == null) {
subscriptions = new CopyOnWriteArrayList<>();
subscriptionsByEventType.put(eventType, subscriptions);
} else {
if (subscriptions.contains(newSubscription)) {
throw new EventBusException("Subscriber " + subscriber.getClass() + " already registered to event "
+ eventType);
}
}
int size = subscriptions.size();
for (int i = 0; i <= size; i++) {
if (i == size || subscriberMethod.priority > subscriptions.get(i).subscriberMethod.priority) {
subscriptions.add(i, newSubscription);
break;
}
}
//记录subscriber对应的所有事件类型
List> subscribedEvents = typesBySubscriber.get(subscriber);
if (subscribedEvents == null) {
subscribedEvents = new ArrayList<>();
typesBySubscriber.put(subscriber, subscribedEvents);
}
subscribedEvents.add(eventType);
if (subscriberMethod.sticky) {
if (eventInheritance) {
// Existing sticky events of all subclasses of eventType have to be considered.
// Note: Iterating over all events may be inefficient with lots of sticky events,
// thus data structure should be changed to allow a more efficient lookup
// (e.g. an additional map storing sub classes of super classes: Class -> List).
Set, Object>> entries = stickyEvents.entrySet();
for (Map.Entry, Object> entry : entries) {
Class> candidateEventType = entry.getKey();
//candidateEventType跟eventType是否是同一类型
if (eventType.isAssignableFrom(candidateEventType)) {
Object stickyEvent = entry.getValue();
checkPostStickyEventToSubscription(newSubscription, stickyEvent);
}
}
} else {
Object stickyEvent = stickyEvents.get(eventType);
checkPostStickyEventToSubscription(newSubscription, stickyEvent);
}
}
}
可以看出,subscribe过程主要做了3件事:
1.将当前的subscriberMethod按priority添加到subscriptionsByEventType中的同一evenType中
2.将当前事件eventType添加到当前subscriber的事件集合中,映射关系表由typesBySubscriber记录
3.如果当前事件是粘性事件,那么从系统保存的粘性发送事件stickyEvents中,找寻与当前事件相同(或与当前事件类型有继承关系)的事件,取出事件参数,并立即调用当前事件方法,传入事件参数。
最后,以一张图来显示register过程:
(2). 事件分发
接下来,我们来看一下EventBus的事件分发过程:
/** Posts the given event to the event bus. */
public void post(Object event) {
//取得post线程当前状态
PostingThreadState postingState = currentPostingThreadState.get();
List
可以看到,post过程首先做的是取出当前线程的线程状态,currentPostingThreadState是一个ThreadLocal对象,这样可以很好的保证在不同的线程中都拥有一份线程独立的PostingThreadState对象。
post过程首先取出当前线程状态对象:PostingThreadState postingState ,然后将当前分发的事件添加进线程对象postingState中,最后,如果当前线程不处于分发状态,那么就循环遍历当前线程所有分发事件,取出事件进行分发。分发函数为:postSingleEvent
private void postSingleEvent(Object event, PostingThreadState postingState) throws Error {
Class> eventClass = event.getClass();
boolean subscriptionFound = false;
//eventInheritance:是否支持事件继承分发,默认为true
if (eventInheritance) {
//存储eventClass及其父类/接口,
// 即发送一个事件,那么注册该事件以及该事件的父类/接口的订阅者都会收到该事件通知
List> eventTypes = lookupAllEventTypes(eventClass);
int countTypes = eventTypes.size();
for (int h = 0; h < countTypes; h++) {
Class> clazz = eventTypes.get(h);
subscriptionFound |= postSingleEventForEventType(event, postingState, clazz);
}
} else {
subscriptionFound = postSingleEventForEventType(event, postingState, eventClass);
}
//如果分发的事件没有对应的订阅者
if (!subscriptionFound) {
if (logNoSubscriberMessages) {
Log.d(TAG, "No subscribers registered for event " + eventClass);
}
//则发送一个NoSubscriberEvent事件
if (sendNoSubscriberEvent && eventClass != NoSubscriberEvent.class &&
eventClass != SubscriberExceptionEvent.class) {
post(new NoSubscriberEvent(this, event));
}
}
}
postSingleEvent为单个事件分发流程,eventInheritance标志事件是否支持继承分发,默认为true(可以在EventBusBuilder中查看到),即EventBus默认会分发该事件到注册该事件或者该事件父类/接口的订阅者事件函数中。所以,postSingleEvent主要做了2件事:
1.判断是否支持事件继承分发:如果支持,那么就通过当前事件class对象,找到其父类/接口所有事件类型,然后循环取出每个事件类别,依次调用postSingleEventForEventType进行实际的事件分发;如果不支持事件继承分发,那么就直接将当前事件分发给当前事件订阅者。
2.如果当前分发事件没有对应的订阅者,那么就会发送一个NoSubscriberEvent事件给到当前事件总线。
而将事件分发给订阅者,主要做了哪些事呢?让我们看一下源码:
private boolean postSingleEventForEventType(Object event, PostingThreadState postingState, Class> eventClass) {
CopyOnWriteArrayList subscriptions;
synchronized (this) {
subscriptions = subscriptionsByEventType.get(eventClass);
}
if (subscriptions != null && !subscriptions.isEmpty()) {
for (Subscription subscription : subscriptions) {
postingState.event = event;
postingState.subscription = subscription;
boolean aborted = false;
try {
postToSubscription(subscription, event, postingState.isMainThread);
aborted = postingState.canceled;
} finally {
postingState.event = null;
postingState.subscription = null;
postingState.canceled = false;
}
if (aborted) {
break;
}
}
return true;
}
return false;
}
原来,事件分发给订阅者主要做的就是:从之前register的订阅者事件集合subscriptionsByEventType中,通过当前事件,得到对应的订阅者集合,结合当前的post线程对象状态,依次调用postToSubscription真正地将事件分发给各个订阅者。
我们知道,在使用EventBus过程中,我们可以在不同的线程post事件,然后订阅该事件的事件函数会根据threadMode会自动进行线程切换,那这是怎样做到的呢?想了解清楚这点,那么我们就要看一下postToSubscription函数了:
private void postToSubscription(Subscription subscription, Object event, boolean isMainThread) {
switch (subscription.subscriberMethod.threadMode) {
case POSTING:
invokeSubscriber(subscription, event);
break;
case MAIN:
if (isMainThread) {
invokeSubscriber(subscription, event);
} else {
mainThreadPoster.enqueue(subscription, event);
}
break;
case BACKGROUND:
if (isMainThread) {
backgroundPoster.enqueue(subscription, event);
} else {
invokeSubscriber(subscription, event);
}
break;
case ASYNC:
asyncPoster.enqueue(subscription, event);
break;
default:
throw new IllegalStateException("Unknown thread mode: " + subscription.subscriberMethod.threadMode);
}
}
这里,我们可以看到,postToSubscription会根据每个订阅者的事件函数的threadMode标识,对应当前线程状态,进行线程间转换,从而保证了订阅者事件函数会运行在与threadMode指定的线程中。
从源码中,我们可以看到,具体的threadMode所对应的线程为:
- POSTING:订阅者事件函数运行在与post线程同一线程。
- MAIN:如果post线程是主线程,那么直接调用订阅者事件函数;如果post不是在主线程,那么通过mainThreadPoster将订阅者函数切换到主线程上运行。
- BACKGROUND:如果调用者是主线程,那么通过backgroundPoster将订阅者事件函数切换到后台线程上运行,反之则在post线程上直接运行。
- ASYNC:无论post处于哪个线程,都会直接重开一条线程执行订阅者函数。
我们看到,post事件后,如果是处于同一条执行线程,EventBus是通过invokeSubscriber()函数让订阅者函数得到回调,具体做法如下:
void invokeSubscriber(Subscription subscription, Object event) {
try {
subscription.subscriberMethod.method.invoke(subscription.subscriber, event);
} catch (InvocationTargetException e) {
handleSubscriberException(subscription, event, e.getCause());
} catch (IllegalAccessException e) {
throw new IllegalStateException("Unexpected exception", e);
}
}
其实就是通过反射进行方法调用。
然后如果是要进行线程切换回调订阅者事件函数,则是采用各种Poster的enqueue方法,那么,我们接下来就来看下它们是具体怎样进行线程切换的。
- ** 切换到主线程:mainThreadPoster.enqueue(subscription, event)**
首先,mainThreadPoster是一个HandlerPoster对象:
final class HandlerPoster extends Handler {
private final PendingPostQueue queue;
private final int maxMillisInsideHandleMessage;
private final EventBus eventBus;
private boolean handlerActive;
HandlerPoster(EventBus eventBus, Looper looper, int maxMillisInsideHandleMessage) {
super(looper);
this.eventBus = eventBus;
this.maxMillisInsideHandleMessage = maxMillisInsideHandleMessage;
queue = new PendingPostQueue();
}
void enqueue(Subscription subscription, Object event) {
PendingPost pendingPost = PendingPost.obtainPendingPost(subscription, event);
synchronized (this) {
queue.enqueue(pendingPost);
if (!handlerActive) {
handlerActive = true;
if (!sendMessage(obtainMessage())) {
throw new EventBusException("Could not send handler message");
}
}
}
}
@Override
public void handleMessage(Message msg) {
boolean rescheduled = false;
try {
long started = SystemClock.uptimeMillis();
while (true) {
PendingPost pendingPost = queue.poll();
if (pendingPost == null) {
synchronized (this) {
// Check again, this time in synchronized
pendingPost = queue.poll();
if (pendingPost == null) {
handlerActive = false;
return;
}
}
}
eventBus.invokeSubscriber(pendingPost);
long timeInMethod = SystemClock.uptimeMillis() - started;
if (timeInMethod >= maxMillisInsideHandleMessage) {
if (!sendMessage(obtainMessage())) {
throw new EventBusException("Could not send handler message");
}
rescheduled = true;
return;
}
}
} finally {
handlerActive = rescheduled;
}
}
}
在回顾下EventBus的构造函数,可以看到:
EventBus(EventBusBuilder builder) {
···
···
mainThreadPoster = new HandlerPoster(this, Looper.getMainLooper(), 10);
···
···
可以看到,mainThreadPoster就是一个主线程的Handler,然后再enqueue的时候,先用一个PendingPost保存一下当前的订阅者信息和事件,并存储到一个queue中,然后通过sendMessage()给自己发了一个消息,那么自然handleMessage()就会得到回掉,然后在HandlerPoster的handleMessage中可以看到,它通过在queue中获取先前存入的事件信息后,调用了eventBus.invokeSubscriber(pendingPost):
void invokeSubscriber(PendingPost pendingPost) {
Object event = pendingPost.event;
Subscription subscription = pendingPost.subscription;
PendingPost.releasePendingPost(pendingPost);
if (subscription.active) {
invokeSubscriber(subscription, event);
}
}
所以invokeSubscriber最终也是采用发射的方式调用到了订阅者的事件函数,而且由于是在主线程Handler的handlerMessage中调用,那么订阅者事件函数肯定是运行在主线程中的。
- ** 切换到后台线程: backgroundPoster.enqueue(subscription, event)**
backgroundPoster是一个BackgroundPoster对象:
final class BackgroundPoster implements Runnable {
public void enqueue(Subscription subscription, Object event) {
PendingPost pendingPost = PendingPost.obtainPendingPost(subscription, event);
synchronized (this) {
queue.enqueue(pendingPost);
if (!executorRunning) {
executorRunning = true;
eventBus.getExecutorService().execute(this);
}
}
}
@Override
public void run() {
while (true) {
PendingPost pendingPost = queue.poll(1000);
···
eventBus.invokeSubscriber(pendingPost);
···
executorRunning = false;
}
}
以上代码经过简化,可以看到BackgroundPoster就是一个Runnable,然后enqueue的时候,也是把订阅者相关信息和事件存储到一个PendingPost 中,最后通过线程池的方式执行自身,那么自己的run()方法就会得到调用,而run()方法里面做的就是从queue中获取数据,最后调用方式方式回调订阅者事件函数。这里有一点要注意的就是,BackgroundPoster在线程池执行一个任务时,executorRunning是会被置成true的,完成一个任务后,才会被重置成false,也就是说,BackgroundPoster的任务是串行运行的。
- ** 新开线程:asyncPoster.enqueue(subscription, event)**
asyncPoster是一个AsyncPoster对象:
/**
* Posts events in background.
*
* @author Markus
*/
class AsyncPoster implements Runnable {
private final PendingPostQueue queue;
private final EventBus eventBus;
AsyncPoster(EventBus eventBus) {
this.eventBus = eventBus;
queue = new PendingPostQueue();
}
public void enqueue(Subscription subscription, Object event) {
PendingPost pendingPost = PendingPost.obtainPendingPost(subscription, event);
queue.enqueue(pendingPost);
eventBus.getExecutorService().execute(this);
}
@Override
public void run() {
PendingPost pendingPost = queue.poll();
if(pendingPost == null) {
throw new IllegalStateException("No pending post available");
}
eventBus.invokeSubscriber(pendingPost);
}
}
从AsyncPoster源码中可以看到,其实现机制与BackgroundPoster是基本一致的。唯一值得注意的是,AsyncPoster来一个任务就立即执行,也就是说AsyncPoster的任务是并行运行的。
综上:对于EventBus的线程切换逻辑,他们的做法其实原理基本一致:
都是通过将订阅者相关信息和事件存储到一个队列里面,然后再异步从相关回调(对于Handler来说就是handlerMessage(),对于线程池来说就是Runnable.run())中,反射执行订阅者事件函数,从而达成线程切换这一功能。
用一张图来说明下post过程:
register,post都讲了,最后,再说一下unregister就圆满了。
(3). 解除订阅
unregister过程:
/** Unregisters the given subscriber from all event classes. */
public synchronized void unregister(Object subscriber) {
List> subscribedTypes = typesBySubscriber.get(subscriber);
if (subscribedTypes != null) {
for (Class> eventType : subscribedTypes) {
unsubscribeByEventType(subscriber, eventType);
}
typesBySubscriber.remove(subscriber);
} else {
Log.w(TAG, "Subscriber to unregister was not registered before: " + subscriber.getClass());
}
}
/** Only updates subscriptionsByEventType, not typesBySubscriber! Caller must update typesBySubscriber. */
private void unsubscribeByEventType(Object subscriber, Class> eventType) {
List subscriptions = subscriptionsByEventType.get(eventType);
if (subscriptions != null) {
int size = subscriptions.size();
for (int i = 0; i < size; i++) {
Subscription subscription = subscriptions.get(i);
if (subscription.subscriber == subscriber) {
subscription.active = false;
subscriptions.remove(i);
i--;
size--;
}
}
}
}
源码中可以看出,unregister主要就是做了2件事:
- 由订阅者subscriber从typesBySubscriber中取出当前订阅者订阅的所有事件集合。
-
遍历订阅事件,依次取出一个事件,然后从subscriptionsByEventType中获得所有订阅该事件的订阅者集合,从中找到该取消注册的subscriber,将其active状态设为false,并从该事件集合中删除。
最后,文字总结下:
Register过程:
注册过程主要执行2个操作:
- 由当前订阅者subscriber,通过apt或者反射方式获取当前subscriber及其父类事件订阅函数(@Subscribe).
- subscribe过程,subscribe就是订阅者的注册过程,该过程会将当前订阅者与其(及其父类)订阅方法记录起来,主要做以下4大操作:
1). 依据上面获取到的事件集合,对每一个事件进行操作。依据事件类别,从subscriptionsByEventType取出所有订阅该事件的订阅者集合(没有订阅,则进行记录创建)。
2). 依据当前事件的priority插入到订阅者集合中,从而实现优先级事件。
3). 将当前事件存储到当前订阅者subscriber的事件集合中,方便后续unregister(依据subscriber获取得到subscriber的事件集合,再遍历事件集合,从各个事件注册集合中,删除该subscriber)。
4). 如果当前事件是sticky事件,那么就从stickyEvents集合中(postSticky()会记录事件类型和事件实例)获取得到事件实例,并让当前订阅者subscriber进行调用。
Post过程:
post过程就是一个事件分发过程,其最基础的元素就是事件。
post一个事件的时候,主要经历以下4大历程:
- 将当前事件添加到当前线程状态事件列表中
- 循环取出当前线程事件,依次进行事件分发:
- 如果当前事件总线支持事件继承分发,那么就获取当前事件及其所有父类/接口类别,存储到集合中,然后遍历集合,依次按照事件类别进行分发;
- 如果当前事件总线不支持事件继承分发,那么直接将当前事件进行分发;
- 如果未找到当前事件订阅者(没有订阅),则post一个NoSubscriberEvent事件
- 根据当前事件类别,进行事件分发。事件分发首先从注册记录中找到该事件类别的订阅者集合,然后遍历订阅者集合,进行单个订阅者事件分发。
- 进行单个订阅者事件分发会依据订阅者事件函数threadMode以及当前线程状态(是否是mainThread),自动进行线程切换。
Unregister过程:
unregister过程主要也是由2个操作:
- 由当前要unregister的订阅者subscriber,获取得到其订阅的所有事件集合。
- 遍历上面得到的事件集合,依据事件从subscriptionsByEventType中取出所有订阅了该事件的订阅者集合,从中找到这个要unregister的订阅者,将其active状态设为false,并从事件集合中进行删除,这样,就完成了unregister过程。
附录
to be continue