线段树区间合并优化dp——cf1197E(好)

线段树优化dp的常见套路题,就是先按某个参数排序,然后按这个下标建立线段树,再去优化dp

本题由于要维护两个数据:最小值和对应的方案数,所以用线段树区间合并

/*
dp[i]表示第i个套娃作为最内层的最小浪费空间
dp[i]=min(dp[j])+out[i]-in[i];
那么按照out排序后按下标建立线段树,节点维护的是二元组(区间最小值,这个最小值对应的方案数)
求dp[i]时二分找到out[j]<=in[i]的区间[1,pos],然后线段树里查询再更新

处理方案数,线段树向上合并时,只保留值最小的那个节点信息即可,如果值相同,那么将方案数合并即可
初始值:如果一个娃外面套任何东西,那么这个娃的方案数设为1即*/


#include
using namespace std;
#define N 200005
#define ll long long
#define mod 1000000007

inline ll f(ll a,ll b){
    ll res=a+b;
    if(res>mod)res-=mod;
    return res;
}

struct Node{ll out,in;}a[N];
bool operator<(Node a,Node b){return a.inin;}
ll n,dp[N],x[N];

#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
struct Seg {
    ll val,num;
    Seg(){}
    Seg(ll val,ll num):val(val),num(num){}
}seg[N<<2];
Seg merge(Seg A,Seg B){
    if(A.valreturn A;
    if(A.val>B.val)return B;
    Seg res;
    res.val=A.val;
    res.num=(A.num+B.num)%mod;
    return res;
}
void build(int l,int r,int rt){
    seg[rt].num=0;seg[rt].val=0x3f3f3f3f3f3f3f3f;
    if(l==r)return;
    int m=l+r>>1;
    build(lson);build(rson);
}
void update(int pos,ll val,ll num,int l,int r,int rt){
    if(l==r){seg[rt].num=num;seg[rt].val=val;return;}
    int m=l+r>>1;
    if(pos<=m)update(pos,val,num,lson);
    else update(pos,val,num,rson);
    seg[rt]=merge(seg[rt<<1],seg[rt<<1|1]);
}
Seg query(int L,int R,int l,int r,int rt){
    if(L<=l && R>=r)return seg[rt];
    int m=l+r>>1;
    Seg res;
    res.val=0x3f3f3f3f3f3f3f3f;
    if(L<=m)res=merge(res,query(L,R,lson));
    if(R>m)res=merge(res,query(L,R,rson));
    return res;
}

void debug(int l,int r,int rt){
    cout<" "<" "<" "<"\n";
    if(l==r)return;
    int m=l+r>>1;
    debug(lson);debug(rson);
}

int main(){
    cin>>n;
    for(int i=1;i<=n;i++){
        cin>>a[i].out>>a[i].in;
        x[i]=a[i].in;
    }
    sort(a+1,a+1+n);sort(x+1,x+1+n);

    build(1,n,1);
    for(int i=n;i>=1;i--){
        int pos=lower_bound(x+1,x+1+n,a[i].out)-x;
        if(pos>n){//外面套不了娃
            update(i,a[i].in,1,1,n,1);
        }
        else {
            Seg res=query(pos,n,1,n,1);
//cout<
            update(i,res.val-(a[i].out-a[i].in),res.num,1,n,1);
            //cout<
        }
        //debug(1,n,1);
    }
    Seg res=query(1,n,1,n,1);
    cout<<res.num;
}

 

你可能感兴趣的:(线段树区间合并优化dp——cf1197E(好))