- MiniMind
亚伯拉罕·黄肯
大模型人工智能
数据集分类:tokenizer训练集:这个数据集用于训练分词器(tokenizer),是文本处理中的一个重要步骤。它可以帮助模型更好地理解文本数据的结构。Pretrain数据:这是用于预训练模型的数据集,它可以帮助模型学习语言的基本结构和特征。SFT数据:SFT(SupervisedFine-Tuning)数据集,用于监督式微调,可以提高模型在特定任务上的性能。DPO数据1和DPO数据2:这两个数
- Qt for WebAssembly程序中文乱码问题处理过程
muren
Qtc++qtwasm开发语言
一、环境操作系统DeepinV23Qt版本6.8.2编程语言C++二、问题现象QtforWebAssembly应用在浏览器页面上英文字母显示正常,中文显示为乱码。经测试分析原因为默认字体不能正常显示汉字。三、处理过程1.准备中文字体文件从Windows下复制宋体简体字体文件。C:\Windows\Fonts\simsun.ttc2.添加资源文件resources.qrcsimsun.ttc3.Qt
- jieba库词频统计_jieba分词器(应用及字典的补充)及文档高频词提取实战
袁圆园建建
jieba库词频统计
jieba分词器是Python中最好的中文分词组件,本文讲解一下jieba分词器及其应用。1、jieba分词器的分词模式jieba分词器提供了三种常用的分词模式1、精确模式:将句子按照最精确的方法进行切分,适合用于进行文本分析;2、全模式:将句子当中所有可以成词的词语都扫描出来,分词速度很快但容易产生歧义;3、搜索引擎模式:在精确模式分词的基础上,将长的句子再次进行切分,提高召回率,适用于搜索引擎
- Mac上传本地项目文件夹到远程Github个人仓库的方法及常见报错处理
Uzw
GitMacgitgithubmac
最近写NER模型的同时学习参悟了一个开源的项目,做了一些Comments改了点分词规则,打算上传到个人Github仓库,上一次本地上传还是用Windows系统,换了Mac发现有一些规则不能用了,好久不用Git都忘光了…上传过程中报错无数,在此一并总结啦!文章目录Prerequisite上传本地文件夹到Github步骤报错问题描述及解决方法1.You‘veaddedanothergitreposit
- LLM(7):文本分词 token 化
CS创新实验室
大模型人工智能深度学习LLM
下面讨论如何将输入文本分割成独立的token,这是为LLM创建嵌入所需的预处理步骤。这些tokens要么是单独的词语,要么是特殊字符,包括标点符号,如图2.4所示。图2.4显示了在LLM背景下文本处理步骤的视图。这里,我们将输入文本分割成独立的token,这些tokens要么是词语,要么是特殊字符,如标点符号。此处用于训练LLM的文本是伊迪斯·沃顿的短篇小说《TheVerdict》,该作品已进入公
- Java通过QRCode生成二维码(1)
2401_84006757
程序员java开发语言
QRCode码,是由Denso公司于1994年9月研制的一种矩阵二维码符号,它具有一维条码及其它二维条码所具有的信息容量大、可靠性高、可表示汉字及图象多种文字信息、保密防伪性强等优点。先下载QRCode.jar包:https://pan.baidu.com/s/1Pb9XzWKhumgwaYrE90vyWg二、代码实例1、生成二维码//加密:文字信息->二维码publicstaticvoidenc
- TikTokenizer 开源项目教程
邱纳巧Gillian
TikTokenizer开源项目教程tiktokenizerOnlineplaygroundforOpenAPItokenizers项目地址:https://gitcode.com/gh_mirrors/ti/tiktokenizer项目介绍TikTokenizer是一个基于Python的开源项目,旨在提供一个高效、灵活的文本分词工具。该项目利用先进的算法和数据结构,能够快速准确地对文本进行分词处
- 从关键词到权重:TF-IDF算法解析
多巴胺与内啡肽.
机器学习tf-idf算法机器学习
文章目录前言一、TF-IDF:关键词的“价值”评估师二、TF-IDF的计算:拆解关键词的“价值”三、TF-IDF的应用:从搜索引擎到文本挖掘四、代码实现:从《红楼梦》中提取核心关键词1、分卷处理1.1代码功能1.2代码实现1.2.1、读取文件1.2.2逐行处理1.2.3.关闭文件2、分词与停用词过滤2.1代码功能2.2代码实现2.2.1读取分卷内容构建DataFrame:2.2.2分词与停用词过滤
- Dify知识库构建流程及示例
cqbelt
ai笔记AI应用
总体流程1.数据预处理清洗:去除噪声、特殊字符、标准化格式。分词/标记化:拆分文本为单词或子词单元(如使用Tokenizer)。元数据关联:附加来源、时间戳等信息,支持多维度检索。2.文本分块固定长度分块:按字符或Token数切分,简单高效。语义分块:基于句子边界或主题分割(如NLP模型识别段落主旨)。重叠策略:相邻块间部分重叠,避免上下文断裂。3.向量化(Embedding)嵌入模型:调用预训练
- 基于关键词的文本知识的挖掘系统的设计与实现
赵谨言
论文毕业设计经验分享
标题:基于关键词的文本知识的挖掘系统的设计与实现内容:1.摘要随着信息时代的发展,文本数据呈爆炸式增长,如何从海量文本中高效挖掘有价值的知识成为重要问题。本文旨在设计并实现一个基于关键词的文本知识挖掘系统。方法上,该系统先对输入的文本进行预处理,包括分词、去除停用词等操作,然后基于关键词匹配算法从文本中提取相关信息,最后将提取的知识进行整理和存储。通过实际测试,该系统能够在平均3秒内对一篇5000
- Java面试系列-ElasticSearch面试题20道,文档,索引,搜索,聚合,分词器,集群管理,索引模版,数据备份和恢复,安全机制,集群扩展,实时搜索,索引生命周期,节点发现,批量操作,基本架构
图苑
java面试elasticsearch
文章目录1.Elasticsearch的基本架构是什么?2.Elasticsearch中的Shard和Replica是如何工作的?3.Elasticsearch中的文档是如何存储的?4.Elasticsearch中的索引是如何创建的?5.Elasticsearch中的搜索是如何工作的?6.Elasticsearch中的聚合是如何工作的?7.Elasticsearch中的分词器是如何工作的?8.El
- ES的预置分词器
阿湯哥
elasticsearch服务器linux
Elasticsearch(简称ES)提供了多种预置的分词器(Analyzer),用于对文本进行分词处理。分词器通常由字符过滤器(CharacterFilters)、分词器(Tokenizer)和词元过滤器(TokenFilters)组成。以下是一些常用的预置分词器及其示例:1.StandardAnalyzer(标准分词器)默认分词器,适用于大多数语言。处理步骤:使用标准分词器(StandardT
- TCP的通信过程
姬浩然
pythontcp通信过程的实现python
3.TCP通信过程3.1编码解码ipython3工具安装pip3installipython3s="hellodage"#str类型不能直接在网络中传输如果需要传输需要转换为Bytes二进制字节类型#utf-8编码情况一个汉字3个字节;GBK编码情况下一个汉字2字节s1="hello大哥"#str-编码->bytes二进制数据=字符串数据.encode(encoding='utf-8')In[8]
- 计算机系统04 - Unicode 和 UTF-8
是小崔啊
#计算机组成原理计算机组成原理
Unicode和UTF-8文章目录Unicode和UTF-8什么是字符编码什么是字符?什么是字符集认识Unicode字符集为什么要使用Unicode字符集Unicode编码标准Unicode编码格式UTF-8编码UTF的字节序问题总结什么是字符编码什么是字符?字符(Character)是对文字和符号的总称,例如汉字、拉丁字母、emoji都是字符。在计算机中,一个字符由2部分组成:1、字符的编码:字
- 洛谷P1320 压缩技术(续集版)
westdata-Tm
算法模拟数组字符串
P1320压缩技术(续集版)题目描述设某汉字由N×NN\timesNN×N的0\texttt00和1\texttt11的点阵图案组成。我们依照以下规则生成压缩码。连续一组数值:从汉字点阵图案的第一行第一个符号开始计算,按书写顺序从左到右,由上至下。第一个数表示连续有几个0\texttt00,第二个数表示接下来连续有几个1\texttt11,第三个数再接下来连续有几个0\texttt00,第四个数接
- 【正则表达式】
lmk565
工具正则表达式
文章目录1元字符2重复3字符4分支条件5反义6分组6.1捕获分组6.2非捕获分组7零宽断言8注释9贪婪与懒惰10POSIX字符类(仅US-ASCII)11转义12匹配模式1元字符代码说明.匹配除换行符以外的任意字符\w匹配字母或数字或下划线或汉字\s匹配任意的空白符\d匹配数字^匹配字符串的开始$匹配字符串的结束\b匹配字符串的结束举例:8答案:\d2重复代码/语法说明*重复零次或更多次+重复一次
- MySQL 全文搜索 (FULLTEXT) vs 合并字段模糊查询 (LIKE) 对比
曹天骄
mysql数据库
在MySQL中,使用FULLTEXT索引通常比将多个字段合并到一个新字段(如search_text)中进行模糊查询更快,尤其是在数据量较大时。以下是详细对比:1.FULLTEXT索引的优势专门优化:FULLTEXT索引是为全文搜索设计的,能够高效处理文本匹配。分词搜索:FULLTEXT支持分词搜索(基于空格或特定字符),可以快速定位关键词。性能更好:对于大文本字段或多字段联合搜索,FULLTEXT
- LLM之Colossal-LLaMA-2:源码解读(init_tokenizer.py文件)实现基于源词表的扩展、(init_model.py文件)实现过计算均值扩展模型、(prepare_pretr
一个处女座的程序猿
CaseCodeNLP/LLMs精选(人工智能)-中级ColossalLLaMA-2自然语言处理
LLM之Colossal-LLaMA-2:源码解读(init_tokenizer.py文件)实现基于jsonl文件中读取新词列表(新中文词汇)→for循环去重实现词表的扩展(中文标记的新词汇)→保存新的分词模型、(init_model.py文件)实现过计算均值来扩展模型的嵌入层以适应新的词汇表,然后保存扩展后的模型、(prepare_pretrain_dataset.py文件)将原始数据集进行处理
- LLMs之Colossal-LLaMA-2:源码解读(train.py文件)基于给定数据集实现持续预训练LLaMA-2—解析命令行参数→初始化配置(分布式训练环境colossalai+训练日志+加速插
一个处女座的程序猿
NLP/LLMs精选(人工智能)-中级Colossal-AILLaMA-2大语言模型自然语言处理
LLMs之Colossal-LLaMA-2:源码解读(train.py文件)基于给定数据集实现持续预训练LLaMA-2—解析命令行参数→初始化配置(分布式训练环境colossalai+训练日志+加速插件)→数据预处理(初始化分词器+数据处理器+数据加载器)→模型训练(初始化模型/优化器/学习率调度器/梯度检查点/Flash-Attention/设置数据类型/是否加载预训练模型/从上一次训练点继续训
- 解决Windows平台下 Visual Studio 中文显示乱码问题
人生三渡
VisualStudiovisualstudio代码规范预编码
目录常用编码格式介绍中文乱码的原因中文乱码的解决方式下载VisualStudio的扩展插件验证是否乱码问题是否解决常用编码格式介绍我们一般常用的就以下几种编码格式:GBK,UTF-8以及Unicode等。GBK:是一种汉字编码规范,它扩展了GB2312编码标准,增加了更多的汉字和符号。GBK详解UTF-8:是针对Unicode的一种可变长度字符编码。它可以用来表示Unicode标准中的任何字符,而
- python 基于混合式推荐算法的学术论文投稿系统
mosquito_lover1
python知识图谱
基于混合式推荐算法的学术论文投稿系统是一个结合多种推荐技术(如基于内容的推荐、协同过滤、知识图谱等)来为研究者推荐合适期刊或会议投稿的系统。以下是实现该系统的关键步骤和Python代码示例。系统设计思路1.数据收集与预处理:-收集论文数据(标题、摘要、关键词、作者信息等)。-收集期刊/会议数据(领域、主题、影响因子、投稿要求等)。-对文本数据进行预处理(分词、去停用词、向量化等)。2.推荐算法设计
- 探究Visual Studio中的乱码问题
L-Super
杂记visualstudioide
关于乱码,没遇到皆大欢喜,遇到了头痛不已。在VisualStudio中程序遇到乱码,需要明确三个概念,那么问题就好解决了。三个字符集概念源码字符集MSVC中/source-charset即源代码文本文件的字符集,NodePad++、记事本、VSCode这样类似的文本编辑器,可以打开源文件看一下你的字符集(文件编码)。源代码文本文件是以二进制的形式存在硬盘里的,无论中文英文都一样,当你输入一个汉字后
- 数学建模之数学模型-3:动态规划
^ω^宇博
数学模型数学建模动态规划算法
文章目录动态规划基本概念阶段状态决策策略状态转移方程指标函数最优指标函数动态规划的求解前向算法后向算法二者比较应用案例一种中文分词的动态规划模型摘要引言动态规划的分词模型问题的数学描述消除状态的后效性选择优化条件算法描述和计算实例算法的效率分析和评价结束语参考文献动态规划基本概念一个多阶段决策过程最优化问题的动态规划模型包括以下666个要素:以下是对动态规划中阶段、状态、决策、策略、状态转移方程、
- golang字符串常用的系统函数
平谷一勺
Golang基础篇golangjava开发语言go字符串基本函数字符串常用方法
1.说明字符串在开发中,使用频率非常高,所以我们需要掌握字符串的常用方法。2.统计字符串的长度按字节len(str)go的编码统一为utf-8(ascii的字符字母和数字占一个字节,汉字占三个字节)str:="hello"fmt.Println(len(str))//5str="hello杭"fmt.Println(len(str))//83.字符串遍历处理带有中文的字符串r:=[]rune(st
- DeepSeek面试——分词算法
mzgong
人工智能算法
DeepSeek-V3分词算法一、核心算法:字节级BPE(Byte-levelBPE,BBPE)DeepSeek-V3采用字节级BPE(BBPE)作为核心分词算法,这是对传统BPE(BytePairEncoding)算法的改进版本。其核心原理是将文本分解为字节(Byte)序列,通过统计高频相邻字节对的共现频率进行逐层合并,最终形成128K扩展词表。二、BBPE的核心优势1.多语言统一处理能力跨语言
- C# JIEBA.NET分词器开发指南
老胖闲聊
C#c#.net开发语言
JIEBA.NET是Jieba分词器的.NET实现版本。Jieba是一个流行的中文分词工具,最初是用Python编写的,而JIEBA.NET将其移植到了.NET平台。它的核心功能是将连续的中文文本切分成有意义的词语(分词),并支持关键词提取、词性标注等功能。以下将通过JIEBA.NET的工作原理、分词过程拆解和案例实战三部分来进行详细讲解:一、工作原理1.分词的基本原理中文分词是将连续的中文字符序
- ddddocr识别图片中的汉字
雪小妮
python
ddddocr识别图片中的汉字importddddocrfromioimportBytesIOfromPILimportImageurl='图片地址'resp=requests.get(url)img=Image.open(BytesIO(resp.content))#初始化OCR模型#创建DdddOcr对象并初始化模型ocr=ddddocr.DdddOcr()#调用recognize函数进行图像
- STM32驱动OLED屏幕全解析:从原理到温度显示实战(中) | 零基础入门STM32第五十四步
触角01010001
STM32入门教程(100步)stm32嵌入式硬件单片机驱动开发物联网
主题内容教学目的/扩展视频OLED显示屏重点课程电路原理,手册分析,驱动程序。初始化,清屏,ASCII字库,显示分区。调用显示函数。做带有加入图形和汉字显示的RTC时钟界面。讲字库的设计原理。师从洋桃电子,杜洋老师文章目录一、OLED驱动架构设计二、关键函数解析(oled0561.c)2.1初始化函数OLED0561_Init2.2显示控制函数2.3清屏函数三、字符显示原理3.1单字符显示函数3.
- OLED屏幕开发全解析:从硬件设计到物联网显示实战 | 零基础入门STM32第五十二步
触角01010001
STM32入门教程(100步)stm32嵌入式硬件驱动开发物联网单片机
主题内容教学目的/扩展视频OLED显示屏重点课程电路原理,手册分析,驱动程序。初始化,清屏,ASCII字库,显示分区。调用显示函数。做带有加入图形和汉字显示的RTC时钟界面。讲字库的设计原理。师从洋桃电子,杜洋老师文章目录一、OLED屏幕核心特性解析二、OLED模块电路设计要点2.1硬件接口设计2.2电源设计规范三、OLED驱动开发关键技术3.1初始化流程设计3.2显示控制功能四、OLED字库生成
- LLM填坑:训练自己的分词器-Tokenizer
微风❤水墨
LLM&AIGC&VLP人工智能
说明:文本搬运以下文章,略微调整,有需求可参考原文。paper:https://zhuanlan.zhihu.com/p/625715830code:Chatterbox/example/TrainTokenizersExample/train_tokenizers.pyatmain·enze5088/Chatterbox·GitHubHuaggingface教程:
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$