经典的二分搜索算法
class Solution {
public int search(int[] nums, int target) {
int l = 0, r = nums.length-1;
while(l <= r) {
int mid = l + (r - l) / 2;
if (nums[mid] == target) {
return mid;
} else if (nums[mid] > target) {
r = mid - 1;
} else {
l = mid + 1;
}
}
return -1;
}
}
例题
74. Search a 2D Matrix
在一个有从左到右、从上到下都是sorted的matrix寻找某个数
Input:
matrix = [
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
target = 3
Output: true
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
if (matrix.length == 0 || matrix[0].length == 0) {
return false;
}
int row = matrix.length, col = matrix[0].length;
int start = 0, end = row * col - 1;
while (start <= end) {
int mid = start + (end - start) / 2;
if (matrix[mid/col][mid%col] == target) {
return true;
}
if (matrix[mid/col][mid%col] > target) {
end = mid - 1;
} else {
start = mid + 1;
}
}
return false;
}
}
- 把matrix当作一个array来处理
240. Search a 2D Matrix II
一个从左到右递增,从上到下递增的matrix,找target
[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
Given target = 5, return true.
Given target = 20, return false.
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
if (matrix.length == 0 || matrix[0].length == 0) {
return false;
}
int r = 0, c = matrix[0].length - 1;
while (r < matrix.length && c >= 0) {
if (matrix[r][c] == target) {
return true;
}
if (matrix[r][c] > target) {
c--;
} else {
r++;
}
}
return false;
}
}
33. Search in Rotated Sorted Array
一个升序的数列有某个点分开并且更换前后两部分的顺序,找到目标数值
Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4
class Solution {
public int search(int[] nums, int target) {
if (nums.length == 0) {
return -1;
}
int start = 0, end = nums.length - 1;
while (start <= end) {
int mid = start + (end - start) / 2;
if (nums[mid] == target) {
return mid;
}
// left part if sorted
if (nums[start] <= nums[mid]) {
if (target < nums[start] || target > nums[mid]) {
start = mid + 1;
} else {
end = mid - 1;
}
} else {
// right part is sorted
if (target < nums[mid] || target > nums[end]) {
end = mid - 1;
} else {
start = mid + 1;
}
}
}
return -1;
}
}
int mid = start + (end - start) / 2;
-
if (nums[start] <= nums[mid])
means left part is sorted; else , the right part is sorted
81. Search in Rotated Sorted Array II
class Solution {
public boolean search(int[] nums, int target) {
if (nums.length == 0) {
return false;
}
int start = 0, end = nums.length-1;
while (start <= end) {
int mid = start + (end - start) / 2;
if (nums[mid] == target) {
return true;
}
// left part is sorted
if (nums[start] < nums[mid]) {
if (target < nums[start] || target > nums[mid]) {
start = mid + 1;
} else {
end = mid - 1;
}
} else if (nums[start] > nums[mid]) {
// right part is sorted
if (target < nums[mid] || target > nums[end]) {
end = mid - 1;
} else {
start = mid + 1;
}
} else {
start++;
}
}
return false;
}
}
-
if (nums[start] < nums[mid])
means left part is sorted -
else if (nums[start] > nums[mid])
means right part is sorted -
else if (nums[start] == nums[mid])
since mid != target, so start != mid, then can increase start