Dota游戏匹配的所有组合

在Dota游戏中有一种匹配玩法,任意5人以下玩家组队,加入匹配系统,由系统组合出5人 vs 5人的组合进行游戏,比如2人+3人 vs 1人+4人。抽象出这个问题,就变成两边各有m个玩家,最多允许n个人组队(n <= m),计算所有的组合方式。思路是,先考虑单边阵营的组合,比如5人,可以1+4,2+3,1+1+1+1+1...,用递归的方式可以计算出所有的单边阵营组合。将单边阵营的组合两两配对,就获取到双边阵营的组合。假设单边组合有n个,那么双边组合就会有c(n, 2)个。但是这里面会有重复的组合,还得把重复的组合去掉。


void TestLadderRule()
{

define OUTPUT_INFO printf("input max camp amount and max team amount(e.g. 5 5): ");

OUTPUT_INFO;

int nCampMbr = 0;
int nMaxTeamMbr = 0;
while (scanf_s("%d %d", &nCampMbr, &nMaxTeamMbr) == 2)
{
    LadderRule(nCampMbr, nMaxTeamMbr);

    OUTPUT_INFO;
}

}

// 参数:阵营人数,最多允许组队人数
void LadderRule( int nCampMbr, int nMaxTeamMbr )
{
if (nCampMbr < 1)
return;

if (nMaxTeamMbr < 0 || nMaxTeamMbr > nCampMbr)
    return;

// 单阵营规则
vector< vector > campRules;
// 匹配规则
vector matchRules;
// 已经使用过的匹配规则
set usedRules;
// 用于生成单阵营规则
int *rule = new int[nCampMbr+1];
memset(rule, 0, sizeof(int)*(nCampMbr+1));

// 找出单边阵营的所有规则
int nTeamMbr = 1;
int nSum = 0;
bool bUpAmount = false;
while (true)
{
    if (!nTeamMbr)
        break;

    if (nTeamMbr < nMaxTeamMbr)
    {
        if (bUpAmount)
        {
            ++rule[nTeamMbr];
            nSum += nTeamMbr;
            bUpAmount = false;
        }

        if (nSum > nCampMbr)
        {
            nSum -= rule[nTeamMbr] * nTeamMbr;
            rule[nTeamMbr] = 0;
            --nTeamMbr;
            bUpAmount = true;
        }
        else
        {
            ++nTeamMbr;
        }
    }
    else
    {
        if ((nCampMbr - nSum) % nMaxTeamMbr == 0)
        {
            rule[nMaxTeamMbr] = (nCampMbr - nSum) / nMaxTeamMbr;
            
            vector tempRule;
            for (int i = 1; i <= nCampMbr; ++i)
                tempRule.push_back(rule[i]);
            campRules.push_back(tempRule);
        }

        rule[nMaxTeamMbr] = 0;
        --nTeamMbr;
        bUpAmount = true;
    }
}

// 将单边阵营的规则两两组合,形成匹配规则
for (size_t i = 0; i < campRules.size(); ++i)
{
    for (size_t j = i; j < campRules.size(); ++j)
    {
        // 总的规则
        char chRule[1025] = { 0 };
        char *chPos = chRule;
        int nLength = 1024;
        for (int k = 0; k < nCampMbr; ++k)
        {
            sprintf_s(chPos, nLength, "%2d ", campRules[i][k] + campRules[j][k]);
            chPos += 3;
            nLength -= 3;
        }

        // 剔除重复的匹配规则
        if (usedRules.count(chRule))
            continue;
        usedRules.insert(chRule);

        sprintf_s(chPos, nLength, "| ");
        chPos += 2;
        nLength -= 2;

        // 左边阵营规则
        for (int k = 0; k < nCampMbr; ++k)
        {
            sprintf_s(chPos, nLength, "%2d ", campRules[i][k]);
            chPos += 3;
            nLength -= 3;
        }

        sprintf_s(chPos, nLength, "| ");
        chPos += 2;
        nLength -= 2;

        // 右边阵营规则
        for (int k = 0; k < nCampMbr; ++k)
        {
            sprintf_s(chPos, nLength, "%2d ", campRules[j][k]);
            chPos += 3;
            nLength -= 3;
        }

        matchRules.push_back(chRule);
    }
}

sort(matchRules.begin(), matchRules.end());

printf("match rules' amount: %d\n", matchRules.size());
for (auto it = matchRules.begin(); it != matchRules.end(); ++it)
{
    printf("%s\n", it->c_str());
}

delete[] rule;

}

代码:https://github.com/windpenguin/WindUtilities

你可能感兴趣的:(Dota游戏匹配的所有组合)