- 堡垒机进化史:从跳板机到云端智能守护者的华丽蜕变
不知 不知
linux服务器windows网络安全
堡垒机的发展第一代堡垒机:跳板机的局限性第二代堡垒机:安全与审计的强化第三代堡垒机:多样化协议与云端化部署堡垒机的技术架构与核心功能未来发展趋势堡垒机,作为网络安全体系中的重要组成部分,其发展历程充满了技术的迭代与需求的驱动。从最初的跳板机概念到如今高度智能化的云堡垒机,堡垒机的发展历程大致可以分为三个阶段。第一代堡垒机:跳板机的局限性堡垒机的理念最早起源于跳板机。2000年左右,中大型企业为了能
- Kmeans与KMedoids聚类对比以及python实现
呵呵爱吃菜
kmeans聚类python
在机器学习领域,聚类算法是一种常用的无监督学习方法,用于将数据集中的样本划分为若干个簇,使得同一簇内的样本尽可能相似,而不同簇之间的样本尽可能不同。K-Means和K-Medoids是两种经典的聚类算法,它们都基于划分的思想,但在具体实现和应用场景上存在一些差异。一、算法原理1.K-Means:中心点选择:K-Means算法通过计算簇内所有样本的均值来确定中心点(centroid)。距离度量:通常
- 9.1 GPTs 应用商店介绍:解锁定制化 AI 的无限潜能
少林码僧
AI大模型应用实战专栏人工智能chatgpt
GPTs应用商店介绍:解锁定制化AI的无限潜能引言:迈入AI应用的新时代随着OpenAI的GPT模型不断进化,GPTs应用商店的推出标志着AI定制化的一个新纪元。它是一个开放平台,允许用户轻松创建、共享和探索各种定制化GPT应用程序。无论是自动化日常任务、提供行业解决方案,还是开发个性化的智能助手,GPTs应用商店都提供了强大的支持,让AI成为每个人触手可及的工具。1.什么是GPTs应用商店?GP
- 制造业数字化转型要注重哪些方面?
制造业数字化转型要注重哪些方面?随着互联网的日益普及,计算和存储能力的迅猛发展,物联网和传感器技术的广泛应用,以及工业软件的不断进化,数据的采集、存储、传输、展现、分析与优化都具备了良好的技术基础。在这种背景下,制造业数字化转型的浪潮势不可挡。优秀的制造企业也在一直致力于产品本身的数字化转型,实现数据采集、状态感知与远程控制,提高产品的附加值,增加服务收入。同时,也只有推进数字化转型,制造企业才能
- 基于遗传算法的城市旅行问题(TSP)求解
NovakG_
深度学习python算法深度学习神经网络
1.遗传算法背景介绍遗传算法是一种基于生物进化论中的自然选择和遗传机制的优化算法,模拟了生物进化过程以搜索最优解。通过仿真染色体的交叉、变异等操作,遗传算法将求解过程转换为类似生物进化的迭代运算。该算法在解决复杂的组合优化问题时,通常比常规优化算法更高效,且具有广泛应用,包括组合优化、机器学习、信号处理、自适应控制和人工生命等领域2.遗传算法基本解题思路遗传算法的设计思路主要受到大自然中生物体进化
- 从Web2到Web3:区块链推动的数字进化之路
清 晨
web3web3去中心化人工智能隐私保护
互联网的演变从最初的Web1到如今的Web3,代表了技术和用户需求的深刻变化。Web3是一个基于区块链技术的全新互联网架构,旨在解决传统互联网(即Web2)中数据集中化和隐私保护等问题。通过去中心化的机制,Web3不仅能够增强数据安全性,还能够赋予用户更高的自主权。本文将从Web2和Web3的差异、区块链的作用以及Web3未来的潜力三个角度进行探讨。Web2:社交与互动的新时代Web2,也被称为社
- 鸿蒙版微信正式上架,国产化软件抱团进化多样化生态圈
zzlyx99
harmonyos华为
微信鸿蒙版已经在2024年10月12日正式上架鸿蒙应用市场,并且开始公测。根据报道,上架后鸿蒙版微信的公测名额在很短的时间内就被抢光,显示出用户对于这款应用的极大热情。腾讯高管张军宣布,自10月12日起,每晚在鸿蒙应用市场的“尝鲜专区”发放鸿蒙版微信的测试名额,以保障更多用户的使用需求。一、华为手机鸿蒙系统如何更新微信鸿蒙版要更新华为手机上的鸿蒙系统至微信鸿蒙版,您可以按照以下步骤操作:确保您的设
- 99.13 金融难点通俗解释:营业利润率
金融OG
金融资产组合模型进化论金融python机器学习算法大数据
目录0.承前1.简述2.比喻:冰淇淋店的日常开销2.1第一步:基础成本2.2第二步:经营支出2.3第三步:计算营业利润率3.生活中的例子3.1好的营业利润率3.2一般的营业利润率3.3差的营业利润率4.小朋友要注意4.1开销大不一定不好4.2开销小不一定好5.总结6.实现代码0.承前如果想更加全面清晰地了解金融资产组合模型进化论的体系架构,可参考:0.金融资产组合模型进化全图鉴1.简述描述营业利润
- 差分进化算法 (Differential Evolution) 算法详解及案例分析
闲人编程
python算法python开发语言选择DE差分进化算法变异
差分进化算法(DifferentialEvolution)算法详解及案例分析目录差分进化算法(DifferentialEvolution)算法详解及案例分析1.引言2.差分进化算法(DE)算法原理2.1基本概念2.2算法步骤3.差分进化算法的优势与局限性3.1优势3.2局限性4.案例分析4.1案例1:单目标优化问题4.1.1问题描述4.1.2代码实现4.1.3流程图4.1.4优化曲线4.2案例2:
- 从System Prompt来看GPT-3.5到GPT-4的进化
herosunly
大模型systempromptgpt-3chatgptgpt4gpt4o
大家好,我是herosunly。985院校硕士毕业,现担任算法t研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了从SystemPrompt来看GPT-3.5到GPT-4的进化之路,希
- 探索AloT(人工智能物联网):未来智能设备的核心驱动力
为也科技
人工智能物联网边缘计算目标检测iot
探索AloT(人工智能物联网):未来智能设备的核心驱动力随着物联网(IoT)技术的飞速发展,人工智能(AI)也在各行各业中找到了应用的空间。两者的结合,诞生了一个崭新的技术领域——AloT(ArtificialIntelligenceofThings,人工智能物联网)。AloT不仅仅是AI与物联网技术的简单融合,它更是推动智能设备进化和物联网产业向更高层次发展的关键力量。今天,我们就来深入探讨Al
- 深度求索DeepSeek V2.5-1210发布:AI代码生成器迎来全新升级
2401_89759264
人工智能前端
深度学习技术日新月异,而强大的AI代码生成器也随之不断进化。今天,我们将聚焦于深度求索团队发布的DeepSeekV2.5-1210版本,这款标志着DeepSeekV2系列收官之作,为我们带来了令人惊喜的Post-Training能力提升和备受期待的联网搜索功能。这篇文章将深入探讨DeepSeekV2.5-1210的各项改进,以及其开源带来的深远影响。DeepSeekV2系列的研发历程与V2.5-1
- 深入理解GPT底层原理--从n-gram到RNN到LSTM/GRU到Transformer/GPT的进化
网络安全研发随想
rnngptlstm
从简单的RNN到复杂的LSTM/GRU,再到引入注意力机制,研究者们一直在努力解决序列建模的核心问题。每一步的进展都为下一步的突破奠定了基础,最终孕育出了革命性的Transformer架构和GPT大模型。1.从n-gram到循环神经网络(RNN)的诞生1.1N-gram模型在深度学习兴起之前,处理序列数据主要依靠统计方法,如n-gram模型。N-gram是一种基于统计的语言模型,它的核心思想是:一
- 深度求索DeepSeek V2.5-1210发布:AI代码生成器迎来全新升级
前端
深度学习技术日新月异,而强大的AI代码生成器也随之不断进化。今天,我们将聚焦于深度求索团队发布的DeepSeekV2.5-1210版本,这款标志着DeepSeekV2系列收官之作,为我们带来了令人惊喜的Post-Training能力提升和备受期待的联网搜索功能。这篇文章将深入探讨DeepSeekV2.5-1210的各项改进,以及其开源带来的深远影响。DeepSeekV2系列的研发历程与V2.5-1
- Android系统开发(十六):从许可名单到角色分配,Android权限机制访问
刘争Stanley
Framework框架大师Android开发巅峰之路android
引言欢迎来到《没权限别搞事》的世界!今天我们聊的是Android权限系统。权限这玩意儿,既是开发者的伙伴,也是绊脚石。一不小心,系统不给面子,直接宕机;稍有疏漏,敏感数据泄露用户信任跑光光。为什么选择这个主题?因为权限管理已经从简单的“允许/拒绝”进化到高深莫测的角色配置。而我们程序猿,不仅要懂,还要会用。来吧,一起解锁Android权限的全新世界!一、权限角色Android权限系统是守护用户隐私
- 测试驱动开发的智能进化:AI代码生成的质量保证之路
前端
测试驱动开发(TDD)作为一种敏捷开发方法,强调在编写代码之前先编写测试用例,以确保代码的质量和可维护性。然而,在面对日益复杂的项目和快速迭代的需求时,传统的TDD方法也面临着诸多挑战,例如开发效率低下和代码质量保证难度大等问题。幸运的是,AI代码生成工具的出现为解决这些问题提供了新的思路和可能性,为TDD带来了智能化的进化。TDD的局限性:效率与质量的博弈传统TDD方法的核心流程是:先编写测试用
- 湖仓进化,极速统一|StarRocks 2024 社区年度报告
数据库
延伸阅读:Lakehouse白皮书|从理论到落地的现代数据架构升级指南StarRocks开源三周年:初心不忘,征程不止!StarRocksAwards2024年度贡献人物StarRocks培训课程重磅上线!专家出品,助你升级打怪不走弯路!更多交流,联系我们:https://wx.focussend.com/weComLink/mobileQrCodeLink/33412/515d5
- AAAI2024论文解读|Towards Fairer Centroids in k-means Clustering面向更公平的 k 均值聚类中心
paixiaoxin
文献阅读论文合集支持向量机机器学习人工智能聚类公平性k均值聚类质心代表性群体代表性公平性
论文标题TowardsFairerCentroidsink-meansClustering面向更公平的k均值聚类中心论文链接TowardsFairerCentroidsink-meansClustering论文下载论文作者StanleySimoes,DeepakP,MuirisMacCarthaigh内容简介本文提出了一种新的聚类级质心公平性(Cluster-levelCentroidFairne
- K-means聚类:解锁数据隐藏结构的钥匙
陈辰学长
kmeans聚类机器学习
K-means聚类:解锁数据隐藏结构的钥匙在机器学习的广阔领域中,无监督学习以其独特的魅力吸引了众多研究者和实践者。其中,K-means聚类作为一种经典且实用的无监督学习算法,以其简单高效的特点,广泛应用于市场细分、图像分割和基因聚类等领域。本文将深入探讨K-means聚类的工作原理、应用实例及其在这些领域中的具体应用,旨在揭示其如何智能划分数据,解锁隐藏结构,为相关领域提供精准导航。一、K-me
- pythonsvm模型优化_Python进化算法工具箱的使用(三)用进化算法优化SVM参数
weixin_39878698
pythonsvm模型优化
前言自从上两篇博客详细讲解了Python遗传和进化算法工具箱及其在带约束的单目标函数值优化中的应用以及利用遗传算法求解有向图的最短路径之后,我经过不断学习工具箱的官方文档以及对源码的研究,更加掌握如何利用遗传算法求解更多有趣的问题了。与前面的文章不同,本篇采用差分进化算法来优化SVM中的参数C和Gamma。(用遗传算法也可以,下面会给出效果比较)首先简单回顾一下Python高性能实用型遗传和进化算
- 差分进化算法_Python进化算法工具箱的使用(三)用进化算法优化SVM参数
weixin_39747075
差分进化算法
前言自从上两篇博客详细讲解了Python遗传和进化算法工具箱及其在带约束的单目标函数值优化中的应用以及利用遗传算法求解有向图的最短路径之后,我经过不断学习工具箱的官方文档以及对源码的研究,更加掌握如何利用遗传算法求解更多有趣的问题了。与前面的文章不同,本篇采用差分进化算法来优化SVM中的参数C和Gamma。(用遗传算法也可以,下面会给出效果比较)首先简单回顾一下Python高性能实用型遗传和进化算
- 差分进化算法DE
DroidMind
智能算法与机器学习差分进化算法
差分进化算法DE属于进化算法,这里算法还包括依次遗传算法、进化策略、进化规划。差分进化算法包括三个基本的操作:变异操作、交叉(重组)操作和选择操作。一、算法建模:1、假设我们希望得到函数f(x)的最优解,这个函数有D个解。2、为函数f(x)设置一个解的组数N,N至少为4。3、这样我们就得到了N组并且每组解的个数为D的集合,它可以使用N个D维参数向量来表示。因为它类似于遗传算法进化一样,是一代一代的
- 差分进化算法(Differential evolution,DE)(附详细注释的Python代码)
XijueJa
算法python开发语言
概念与基本原理差分进化算法(DifferentialEvolution,简称DE)是一种基于种群的随机优化算法,由Storm和Price在1995年提出。它主要应用于解决非线性、非凸、连续和离散的优化问题。DE算法以其简单性、鲁棒性和高效性而受到广泛关注。差分进化算法的基本思想是通过模拟自然进化过程中的遗传和变异机制来寻找问题的最优解,类似于遗传算法。通过变异、交叉与选择,使得初始化的种群不断朝最
- 方舟生存进化mysql_基于MySQL 的 SQL 优化总结_卡盟,辅助
weixin_36307344
方舟生存进化mysql
SonarQube搭建手记dnf辅助基于MySQL的SQL优化总结在数据库运维过程中,优化SQL是DBA团队的一样平常义务。例行SQL优化,不仅可以提高程序性能,还能减低线上故障的概率。现在常用的SQL优化方式包罗但不限于:营业层优化、SQL逻辑优化、索引优化等。其中索引优化通常通过调整索引或新增索引从而到达SQL优化的目的。索引优化往往可以在短时间内发生异常伟大的效果。---来自美团手艺团队SQ
- 方舟生存进化mysql_一分钟明了MySQL聚簇索引和非聚簇索引_rust辅助,方舟生存进化辅助...
突发奇想的饭粒
方舟生存进化mysql
SpringBoot整合rabbitmq辅助MySQL的InnoDB索引数据结构是B树,主键索引叶子节点的值存储的就是MySQL的数据行,通俗索引的叶子节点的值存储的是主键值,这是了解聚簇索引和非聚簇索引的条件什么是聚簇索引?很简单记着一句话:找到了索引就找到了需要的数据,那么这个索引就是聚簇索引,以是主键就是聚簇索引,修改聚簇索引实在就是修改主键。什么是非聚簇索引?索引的存储和数据的存储是星散的
- 【泡沫】追寻热爱:出书、写博客与自我突破的年度历程
泡沫o0
c++开发语言arm开发arm嵌入式博客之星qt
泡沫年度总结1.引言:写作者的自白1.1年度“主旋律”与写作初衷1.2年终回顾的意义2.成长蜕变:从追赶到沉淀2.1心态进化:从追赶到反思2.2技能与认知的双重提升3.创作之路:写作背后的故事3.1出版首本图书的幕后故事3.2300+篇博客的持续动力4.平衡艺术:在写作与生活之间4.1时间管理与精力分配的难题4.2焦虑与压力的自我调适5.远航计划:2025我们启程5.12025规划:在稳步中寻求突
- 遗传算法
神罗天征666
c++整理算法
遗传算法(GA)一、什么是遗传算法?遗传算法(GeneticAlgorithm,GA)是一类模仿生物进化过程的搜索启发式算法。它们是由约翰·霍兰德(JohnHolland)在20世纪70年代初提出的。遗传算法通过自然遗传机制(如选择、交叉、变异等)的模拟,对问题的潜在解进行进化,以期找到或逼近最优解。基本原理是类比达尔文进化论—“物竞天择,适者生存”其实很好理解,学过生物的都知道达尔文进化论的大概
- Go语言的学习路线
技术的探险家
包罗万象golang开发语言后端
Go语言的学习路线随着科技的迅速发展,编程语言也在不断进化,Go(又称Golang)作为一种现代化的编程语言,其简单性、高效性和强大的并发支持吸引了越来越多的开发者。本文将为您提供一条系统的Go语言学习路线,帮助您从零基础逐步掌握这门语言。一、Go语言简介Go语言是Google于2007年开发的一种开源编程语言,旨在提高编程的效率,与传统的编程语言相比,Go具有以下几个显著的优点:简洁性:Go设计
- 【机器学习:二十九、K-means算法:原理与应用】
KeyPan
机器学习机器学习算法kmeans人工智能神经网络深度学习数据挖掘
1.K-means概述K-means是一种经典的无监督学习算法,广泛应用于数据聚类任务。其核心思想是将数据集划分为kkk个簇,使得每个簇内的样本尽可能相似,同时不同簇之间尽可能不同。K-means的简单性和高效性使其在模式识别、图像处理、市场分析等领域具有广泛应用。核心思想基于欧几里得距离度量数据点之间的相似性。不断优化簇中心位置,最小化簇内样本与其中心点之间的总距离(即误差平方和,SSE)。适用
- 【机器学习】---神经架构搜索(NAS)
Undoom
机器学习Python机器学习架构人工智能python
这里写目录标题引言1.什么是神经架构搜索(NAS)1.1为什么需要NAS?2.NAS的三大组件2.1搜索空间搜索空间设计的考虑因素:2.2搜索策略2.3性能估计3.NAS的主要方法3.1基于强化学习的NAS3.2基于进化算法的NAS3.3基于梯度的NAS4.NAS的应用5.实现一个简单的NAS框架6.总结引言随着深度学习的成功应用,神经网络架构的设计变得越来越复杂。模型的性能不仅依赖于数据和训练方
- HQL之投影查询
归来朝歌
HQLHibernate查询语句投影查询
在HQL查询中,常常面临这样一个场景,对于多表查询,是要将一个表的对象查出来还是要只需要每个表中的几个字段,最后放在一起显示?
针对上面的场景,如果需要将一个对象查出来:
HQL语句写“from 对象”即可
Session session = HibernateUtil.openSession();
- Spring整合redis
bylijinnan
redis
pom.xml
<dependencies>
<!-- Spring Data - Redis Library -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redi
- org.hibernate.NonUniqueResultException: query did not return a unique result: 2
0624chenhong
Hibernate
参考:http://blog.csdn.net/qingfeilee/article/details/7052736
org.hibernate.NonUniqueResultException: query did not return a unique result: 2
在项目中出现了org.hiber
- android动画效果
不懂事的小屁孩
android动画
前几天弄alertdialog和popupwindow的时候,用到了android的动画效果,今天专门研究了一下关于android的动画效果,列出来,方便以后使用。
Android 平台提供了两类动画。 一类是Tween动画,就是对场景里的对象不断的进行图像变化来产生动画效果(旋转、平移、放缩和渐变)。
第二类就是 Frame动画,即顺序的播放事先做好的图像,与gif图片原理类似。
- js delete 删除机理以及它的内存泄露问题的解决方案
换个号韩国红果果
JavaScript
delete删除属性时只是解除了属性与对象的绑定,故当属性值为一个对象时,删除时会造成内存泄露 (其实还未删除)
举例:
var person={name:{firstname:'bob'}}
var p=person.name
delete person.name
p.firstname -->'bob'
// 依然可以访问p.firstname,存在内存泄露
- Oracle将零干预分析加入网络即服务计划
蓝儿唯美
oracle
由Oracle通信技术部门主导的演示项目并没有在本月较早前法国南斯举行的行业集团TM论坛大会中获得嘉奖。但是,Oracle通信官员解雇致力于打造一个支持零干预分配和编制功能的网络即服务(NaaS)平台,帮助企业以更灵活和更适合云的方式实现通信服务提供商(CSP)的连接产品。这个Oracle主导的项目属于TM Forum Live!活动上展示的Catalyst计划的19个项目之一。Catalyst计
- spring学习——springmvc(二)
a-john
springMVC
Spring MVC提供了非常方便的文件上传功能。
1,配置Spring支持文件上传:
DispatcherServlet本身并不知道如何处理multipart的表单数据,需要一个multipart解析器把POST请求的multipart数据中抽取出来,这样DispatcherServlet就能将其传递给我们的控制器了。为了在Spring中注册multipart解析器,需要声明一个实现了Mul
- POJ-2828-Buy Tickets
aijuans
ACM_POJ
POJ-2828-Buy Tickets
http://poj.org/problem?id=2828
线段树,逆序插入
#include<iostream>#include<cstdio>#include<cstring>#include<cstdlib>using namespace std;#define N 200010struct
- Java Ant build.xml详解
asia007
build.xml
1,什么是antant是构建工具2,什么是构建概念到处可查到,形象来说,你要把代码从某个地方拿来,编译,再拷贝到某个地方去等等操作,当然不仅与此,但是主要用来干这个3,ant的好处跨平台 --因为ant是使用java实现的,所以它跨平台使用简单--与ant的兄弟make比起来语法清晰--同样是和make相比功能强大--ant能做的事情很多,可能你用了很久,你仍然不知道它能有
- android按钮监听器的四种技术
百合不是茶
androidxml配置监听器实现接口
android开发中经常会用到各种各样的监听器,android监听器的写法与java又有不同的地方;
1,activity中使用内部类实现接口 ,创建内部类实例 使用add方法 与java类似
创建监听器的实例
myLis lis = new myLis();
使用add方法给按钮添加监听器
- 软件架构师不等同于资深程序员
bijian1013
程序员架构师架构设计
本文的作者Armel Nene是ETAPIX Global公司的首席架构师,他居住在伦敦,他参与过的开源项目包括 Apache Lucene,,Apache Nutch, Liferay 和 Pentaho等。
如今很多的公司
- TeamForge Wiki Syntax & CollabNet User Information Center
sunjing
TeamForgeHow doAttachementAnchorWiki Syntax
the CollabNet user information center http://help.collab.net/
How do I create a new Wiki page?
A CollabNet TeamForge project can have any number of Wiki pages. All Wiki pages are linked, and
- 【Redis四】Redis数据类型
bit1129
redis
概述
Redis是一个高性能的数据结构服务器,称之为数据结构服务器的原因是,它提供了丰富的数据类型以满足不同的应用场景,本文对Redis的数据类型以及对这些类型可能的操作进行总结。
Redis常用的数据类型包括string、set、list、hash以及sorted set.Redis本身是K/V系统,这里的数据类型指的是value的类型,而不是key的类型,key的类型只有一种即string
- SSH2整合-附源码
白糖_
eclipsespringtomcatHibernateGoogle
今天用eclipse终于整合出了struts2+hibernate+spring框架。
我创建的是tomcat项目,需要有tomcat插件。导入项目以后,鼠标右键选择属性,然后再找到“tomcat”项,勾选一下“Is a tomcat project”即可。具体方法见源码里的jsp图片,sql也在源码里。
补充1:项目中部分jar包不是最新版的,可能导
- [转]开源项目代码的学习方法
braveCS
学习方法
转自:
http://blog.sina.com.cn/s/blog_693458530100lk5m.html
http://www.cnblogs.com/west-link/archive/2011/06/07/2074466.html
1)阅读features。以此来搞清楚该项目有哪些特性2)思考。想想如果自己来做有这些features的项目该如何构架3)下载并安装d
- 编程之美-子数组的最大和(二维)
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
import java.util.Random;
public class MaxSubArraySum2 {
/**
* 编程之美 子数组之和的最大值(二维)
*/
private static final int ROW = 5;
private stat
- 读书笔记-3
chengxuyuancsdn
jquery笔记resultMap配置ibatis一对多配置
1、resultMap配置
2、ibatis一对多配置
3、jquery笔记
1、resultMap配置
当<select resultMap="topic_data">
<resultMap id="topic_data">必须一一对应。
(1)<resultMap class="tblTopic&q
- [物理与天文]物理学新进展
comsci
如果我们必须获得某种地球上没有的矿石,才能够进行某些能量输出装置的设计和建造,而要获得这种矿石,又必须首先进行深空探测,而要进行深空探测,又必须获得这种能量输出装置,这个矛盾的循环,会导致地球联盟在与宇宙文明建立关系的时候,陷入困境
怎么办呢?
 
- Oracle 11g新特性:Automatic Diagnostic Repository
daizj
oracleADR
Oracle Database 11g的FDI(Fault Diagnosability Infrastructure)是自动化诊断方面的又一增强。
FDI的一个关键组件是自动诊断库(Automatic Diagnostic Repository-ADR)。
在oracle 11g中,alert文件的信息是以xml的文件格式存在的,另外提供了普通文本格式的alert文件。
这两份log文
- 简单排序:选择排序
dieslrae
选择排序
public void selectSort(int[] array){
int select;
for(int i=0;i<array.length;i++){
select = i;
for(int k=i+1;k<array.leng
- C语言学习六指针的经典程序,互换两个数字
dcj3sjt126com
c
示例程序,swap_1和swap_2都是错误的,推理从1开始推到2,2没完成,推到3就完成了
# include <stdio.h>
void swap_1(int, int);
void swap_2(int *, int *);
void swap_3(int *, int *);
int main(void)
{
int a = 3;
int b =
- php 5.4中php-fpm 的重启、终止操作命令
dcj3sjt126com
PHP
php 5.4中php-fpm 的重启、终止操作命令:
查看php运行目录命令:which php/usr/bin/php
查看php-fpm进程数:ps aux | grep -c php-fpm
查看运行内存/usr/bin/php -i|grep mem
重启php-fpm/etc/init.d/php-fpm restart
在phpinfo()输出内容可以看到php
- 线程同步工具类
shuizhaosi888
同步工具类
同步工具类包括信号量(Semaphore)、栅栏(barrier)、闭锁(CountDownLatch)
闭锁(CountDownLatch)
public class RunMain {
public long timeTasks(int nThreads, final Runnable task) throws InterruptedException {
fin
- bleeding edge是什么意思
haojinghua
DI
不止一次,看到很多讲技术的文章里面出现过这个词语。今天终于弄懂了——通过朋友给的浏览软件,上了wiki。
我再一次感到,没有辞典能像WiKi一样,给出这样体贴人心、一清二楚的解释了。为了表达我对WiKi的喜爱,只好在此一一中英对照,给大家上次课。
In computer science, bleeding edge is a term that
- c中实现utf8和gbk的互转
jimmee
ciconvutf8&gbk编码
#include <iconv.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/stat.h>
int code_c
- 大型分布式网站架构设计与实践
lilin530
应用服务器搜索引擎
1.大型网站软件系统的特点?
a.高并发,大流量。
b.高可用。
c.海量数据。
d.用户分布广泛,网络情况复杂。
e.安全环境恶劣。
f.需求快速变更,发布频繁。
g.渐进式发展。
2.大型网站架构演化发展历程?
a.初始阶段的网站架构。
应用程序,数据库,文件等所有的资源都在一台服务器上。
b.应用服务器和数据服务器分离。
c.使用缓存改善网站性能。
d.使用应用
- 在代码中获取Android theme中的attr属性值
OliveExcel
androidtheme
Android的Theme是由各种attr组合而成, 每个attr对应了这个属性的一个引用, 这个引用又可以是各种东西.
在某些情况下, 我们需要获取非自定义的主题下某个属性的内容 (比如拿到系统默认的配色colorAccent), 操作方式举例一则:
int defaultColor = 0xFF000000;
int[] attrsArray = { andorid.r.
- 基于Zookeeper的分布式共享锁
roadrunners
zookeeper分布式共享锁
首先,说说我们的场景,订单服务是做成集群的,当两个以上结点同时收到一个相同订单的创建指令,这时并发就产生了,系统就会重复创建订单。等等......场景。这时,分布式共享锁就闪亮登场了。
共享锁在同一个进程中是很容易实现的,但在跨进程或者在不同Server之间就不好实现了。Zookeeper就很容易实现。具体的实现原理官网和其它网站也有翻译,这里就不在赘述了。
官
- 两个容易被忽略的MySQL知识
tomcat_oracle
mysql
1、varchar(5)可以存储多少个汉字,多少个字母数字? 相信有好多人应该跟我一样,对这个已经很熟悉了,根据经验我们能很快的做出决定,比如说用varchar(200)去存储url等等,但是,即使你用了很多次也很熟悉了,也有可能对上面的问题做出错误的回答。 这个问题我查了好多资料,有的人说是可以存储5个字符,2.5个汉字(每个汉字占用两个字节的话),有的人说这个要区分版本,5.0
- zoj 3827 Information Entropy(水题)
阿尔萨斯
format
题目链接:zoj 3827 Information Entropy
题目大意:三种底,计算和。
解题思路:调用库函数就可以直接算了,不过要注意Pi = 0的时候,不过它题目里居然也讲了。。。limp→0+plogb(p)=0,因为p是logp的高阶。
#include <cstdio>
#include <cstring>
#include <cmath&