- 【机器学习笔记 Ⅱ】9 模型评估
巴伦是只猫
机器学习机器学习笔记人工智能
评估机器学习模型是确保其在实际应用中有效性和可靠性的关键步骤。以下是系统化的评估方法,涵盖分类、回归、聚类等任务的评估指标和技术:一、分类模型评估1.基础指标2.高级指标ROC-AUC:通过绘制真正例率(TPR)vs假正例率(FPR)曲线下面积评估模型整体性能。AUC=1:完美分类;AUC=0.5:随机猜测。适用于二分类及多分类(OvR或OvO策略)。混淆矩阵:可视化模型在各类别上的具体错误(如将
- 【附源码】基于flask框架求职招聘网站 (python+mysql+论文)
本系统(程序+源码)带文档lw万字以上文末可获取本课题的源码和程序系统程序文件列表系统的选题背景和意义选题背景:随着互联网技术的飞速发展,网络求职招聘已经成为了现代人才市场的一大趋势。传统的求职招聘方式逐渐被线上平台所取代,这主要得益于网络平台的便捷性、实时性和广泛性。然而,现有的求职招聘网站虽然数量众多,但质量参差不齐,用户体验也各不相同。一些求职者和招聘者在面对海量信息时,往往会感到无所适从,
- 一名工作8年Java开发的技术博主求职经历
MoneyHacksPro
java
本次会议主要分享了2025年3月至4月中旬的求职经历,求职者通过投递简历、调整期望薪资、优化简历等方式寻找工作,但初期未获得面试机会。求职者通过创建“包皮公司”进行模拟面试,了解市场行情并调整自身定位,最终在4月中旬获得两家公司的面试机会并成功入职。求职者总结了简历优化、面试技巧、市场行情分析等经验,强调在求职过程中需根据实际情况灵活调整策略,并注重差异化竞争。——————————————————
- 【DeepSeek开源周】Day 4:DualPipe & EPLB 学习笔记
蓝海星梦
DeepSeek开源周探秘开源学习笔记人工智能云计算分布式
目录一、DualPipe&EPLB概述二、DualPipe详解1.流水线并行策略(1)F-then-B策略(2)1F1B策略2.朴素流水线并行3.GPipe微批次流水线并行4.PipeStream5.ZBPP6.DualPipe7.DualPipeV8.流水线并行方案对比三、EPLB详解1.专家并行(EP)2.EPLB冗余专家策略3.负载均衡策略(1)分层负载均衡(2)全局负载均衡(3)接口和示例
- AI 浪潮下的锚与帆:工程师文化的变与不变 | 架构师夜生活
工程师文化
目录:一、那些让程序员焦虑的"假消息"二、我们理解的工程师文化三、AI到底改变了什么四、程序员需要学什么新技能五、80后程序员vs 00后程序员六、最好的时代永远在前方引言公司食堂里,一个产品经理和一个程序员正在讨论一个让行业都焦虑的话题:"AI来了,你们程序员还有什么用?我直接对着机器说需求,它就能给我做出来,我还要你干嘛?你还要给我排期!"产品经理显得有些得意。"你对它说的话它听得懂吗?它生成
- 【2025/07/04】GitHub 今日热门项目
GitHub今日热门项目每日精选优质开源项目|发现优质开源项目,跟上技术发展趋势报告概览统计项数值说明报告日期2025-07-04(周五)GitHubTrending每日快照数据时间12:00:27实时爬取生成项目总数16个精选热门开源项目⭐总星数475.9K社区认可度指标今日热度+5.4K24小时新增关注数据洞察核心指标项目总览16个精选项目⭐社区认可475.9K总星标数今日热度5.4K新增关注
- Python实现布林带策略完整代码
程序化交易助手
量化软件Python程序化交易Python量化炒股PTradeQMT量化交易量化软件deepseek
Python实现布林带策略完整代码布林带是个啥玩意儿?我见过太多新手一上来就问"布林带能不能赚钱",这问题就跟问"菜刀能不能切菜"一样。布林带就是个工具,关键看你怎么用。简单来说,它就是在均线上下画两条通道线,股价大部分时间都在这个通道里晃悠。记得去年有个客户,拿着布林带当圣杯,结果亏得妈都不认识。后来我给他看了我的Python策略代码,这哥们才明白原来工具要配合仓位管理和止损。现在他账户已经翻倍
- 从亏损到盈利:用Python实现WVAD策略,量价结合更靠谱
程序化交易助手
量化软件Python程序化交易Python量化炒股PTradeQMT量化交易量化软件deepseek
从亏损到盈利:用Python实现WVAD策略,量价结合更靠谱那个让我夜不能寐的亏损账户去年有个客户老张来找我,50万本金半年亏了15万。他红着眼睛问我:"为什么我跟着大V买卖还是亏?"我看了他的交易记录就明白了——全是凭感觉操作,涨了追,跌了割,完全被市场情绪牵着鼻子走。这让我想起自己刚入行时,盯着分时图眼睛发酸的日子。直到有天看到营业部老总桌上那本《量化交易入门》,才恍然大悟:原来职业玩家都在用
- 《王者荣耀》游戏优化的AI革命:从性能提升到生态治理
AI编程员
001AI传统&编程语言002AI编程工具汇总003AI编程作品汇总人工智能笔记学习深度学习游戏
目录:AI技术进化历程:使用时间轴和表格介绍“绝悟”AI从基础操作到职业水平的成长过程,以及“开悟”平台的技术外溢效应。性能优化策略:通过终端适配方案表格,分析预计算烘焙、多线程优化等技术如何解决亿级用户的设备兼容问题。游戏环境治理:列举AI接管、违规检测等机制如何应对挂机、摆烂等破坏公平性的行为。产业技术外溢:说明游戏AI如何向智能制造、自动驾驶等领域输出协作决策模型。伦理争议:探讨“超规格能力
- 一秒四次!高频Tick五档期货Level2分析
一秒四次!高频Tick五档期货Level2分析国内期货level2高频数据(一秒四次)下载链接:https://pan.baidu.com/s/144ewl4T0dQvrAedhLz8uJw?pwd=c33h提取码:c33h通过历史Level2一秒四次高频数据深层次分析交易可以分析出比较活跃的品种一:m2505(1)在11:12:36.158的瞬间,一笔引人注目的大单投入市场,3606份订单被安排
- 【机器学习笔记 Ⅲ】3 异常检测算法
巴伦是只猫
机器学习机器学习笔记算法
异常检测算法(AnomalyDetection)详解异常检测是识别数据中显著偏离正常模式的样本(离群点)的技术,广泛应用于欺诈检测、故障诊断、网络安全等领域。以下是系统化的解析:1.异常类型类型描述示例点异常单个样本明显异常信用卡交易中的天价消费上下文异常在特定上下文中异常(如时间序列)夏季气温突降至零下集体异常一组相关样本联合表现为异常网络流量中突然的DDOS攻击流量2.常用算法(1)基于统计的
- 机器学习笔记二-回归
回归是统计学和机器学习中的一种基本方法,用于建模变量之间的关系,特别是用一个或多个自变量(输入变量)来预测一个因变量(输出变量)的值。回归分析广泛应用于预测、趋势分析和关联研究中。根据目标和数据的性质,可以使用不同类型的回归方法。1.回归的基本概念:自变量(IndependentVariable):也称为预测变量、解释变量,是模型中的输入变量,用于预测或解释因变量的变化。因变量(Dependent
- OpenHarmony解读之设备认证:Pake协议详解与实战
陈乔布斯
鸿蒙开发HarmonyOSOpenHarmonyharmonyos分布式鸿蒙开发软总线openHarmony嵌入式硬件
往期推文全新看点(文中附带最新·鸿蒙全栈学习笔记)①鸿蒙应用开发与鸿蒙系统开发哪个更有前景?②嵌入式开发适不适合做鸿蒙南向开发?看完这篇你就了解了~③对于大前端开发来说,转鸿蒙开发究竟是福还是祸?④鸿蒙岗位需求突增!移动端、PC端、IoT到底该怎么选?⑤记录一场鸿蒙开发岗位面试经历~⑥持续更新中……一、概述在设备认证过程中,pake协议用于认证会话密钥协商,基于该会话密钥,双方可以安全地交换各自的
- 量化开发(系列第3篇): C++在高性能量化交易中的核心应用与技术栈深度解析
Natsume1710
c++开发语言性能优化python
本文为《量化开发》系列第3篇参考GitHub项目:Awesome-QuantDev-Learn前言在量化交易领域,Python以其开发效率高、生态系统丰富等优势,成为策略研究、数据分析及中低频交易的首选语言。在本系列前两篇文章中,我们详细探讨了Python在量化入门与策略回测中的实践。然而,当进入对延迟要求极为严苛的高频交易(High-FrequencyTrading,HFT)领域时,Python
- 量化策略进阶:事件驱动与另类数据挖掘实战
前面的章节,我们已经详细探讨了量化系统的基础架构:从数据的获取与管理(数据层),到策略的研发与验证(回测层),再到指令的高速执行(交易执行层),以及确保资金安全的防线(风控与监控运维层),我们共同构建了一套完整的量化交易体系。今天,我们将深入探讨量化策略的更高维度:事件驱动型策略和另类数据挖掘。这不仅仅是技术栈的扩展,更是对市场洞察力和信息处理能力的全面提升,旨在帮助您的策略在传统量价数据之外,捕
- Redis之缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级
俺是农村的
Redisredisjava缓存
Redis之缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级1、缓存雪崩发生场景:当Redis服务器重启或者大量缓存在同一时期失效时,此时大量的流量会全部冲击到数据库上面,数据库有可能会因为承受不住而宕机解决办法:1)缓存数据的过期时间设置随机,防止同一时间大量数据过期现象发生。2)给每一个缓存数据增加相应的缓存标记,记录缓存的是否失效,如果缓存标记失效,则更新数据缓存。3)一般并发量不是特别多的
- Python量化策略与回测框架实战:从“纸上谈兵”到“真金白银”的第一步(系列第2篇)
Natsume1710
python开发语言github
作者:GitHub项目地址Awesome-QuantDev-Learn本文为量化开发学习路线系列第2篇,欢迎收藏与关注。引言:为什么选择Python作为量化入门的起点?在上一篇文章中,我们详细讲解了量化开发的基本框架与开发者思维的转变路径。那么,具体要如何开始第一步实践呢?答案是:从Python入门。Python以其快速原型开发能力、丰富的数据分析工具包,以及良好的社区生态,已经成为全球范围内量化
- 缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级
1.缓存雪崩(CacheAvalanche)定义:缓存雪崩是指大量缓存中的数据在同一时间过期,导致大量请求同时访问数据库,造成数据库压力骤增,甚至可能导致数据库崩溃。原因:多个缓存的key在同一时间过期;当这些key不再命中缓存时,所有请求都会同时访问数据库。应对策略:设置过期时间加随机值:避免缓存的key在相同时间过期。比如,如果某个key设置过期时间为1小时,可以随机设置在59分钟到61分钟之
- 构建安全隔离的数据共享通道:NFS、CSI 与动态卷调度实践
观熵
Docker安全docker容器存储
构建安全隔离的数据共享通道:NFS、CSI与动态卷调度实践关键词:容器存储、安全隔离、NFS、CSI插件、动态卷调度、跨节点挂载、PVC策略、Kubernetes卷权限摘要:在容器化应用中,跨Pod、跨节点的数据共享是典型需求场景,NFS与CSI(ContainerStorageInterface)成为主流实现路径。但共享存储往往伴随权限泄露、数据冲突、状态污染等风险。本文从NFS与CSI的原理出
- 面向对象与面向过程程序设计语言:核心概念、对比分析与应用指南
咸鱼_要_翻身
C++CPython开发语言
目录一、面向过程程序设计语言(ProceduralProgramming)1、基本概念2、主要特点3、代表语言4、典型示例(C语言)5、优势6、局限性二、面向对象程序设计语言(Object-OrientedProgramming)1、基本概念2、四大核心特性3、代表语言4、典型示例(Java)5、优势6、局限性三、主要区别对比四、实际应用选择建议五、现代语言趋势一、面向过程程序设计语言(Proce
- 数据库迁移实战:如何零停机、零丢失迁移数据库?
Leaton Lee
数据库
引言:一场没有硝烟的“数据大迁徙”想象一下,你正在为一家电商公司优化数据库架构,需要将MySQL迁移到分布式数据库TiDB。但问题来了:如何在业务高峰期不停止服务,同时确保数据零丢失?这不仅是技术挑战,更是一场精密的“数据芭蕾舞”。今天,我们就从理论到实战,手把手教你完成这场“不可能的任务”!一、迁移前的“战前沙盘推演”1.1数据摸底:绘制“数据地图”数据规模:统计表大小、索引、分区信息(示例:S
- 如何防止SpringBoot上传大体积Excel导致内存溢出的思考
SpringBoot上传大体积Excel:防止内存溢出的策略与实践问题背景与原因分析在SpringBoot应用中处理大体积Excel文件时,内存溢出是一个常见的问题。当一个大型的Excel文件被读取时,如果使用传统的读取方式(如一次性加载整个文件到内存),可能会消耗大量的内存资源,尤其是在服务器资源有限的情况下,很容易触发Java堆内存溢出(OutOfMemoryError)。这不仅会导致应用崩溃
- 破解FPS主线程阻塞的终极方案
你一身傲骨怎能输
FPS射击游戏高级技术专栏性能优化
文章摘要FPS游戏中主线程等待其他线程(如物理、AI等)会引发性能瓶颈,导致帧率下降和卡顿。常见原因包括同步点过多、任务分配不均、锁滥用和数据依赖过强。优化方法包括:1)减少硬等待,采用异步处理;2)任务分解和负载均衡;3)使用无锁同步;4)流水线分阶段处理;5)设置超时降级策略。引擎层面可利用Unity的JobSystem或Unreal的TaskGraph系统进行优化。关键是通过Profiler
- 深度 |AI高质量数据集交易爆发式增长
数智前沿
数字化转型人工智能数据集
AI产业从通用模型向行业垂直应用快速融合下沉的阶段演进,人工智能三大基本要素之一数据,面临的高质量数据不足问题却凸显。财联社记者最新从业内获悉,目前各大模型企业迫切希望获得更多更好的高质量数据集,需求集中于头部企业行业知识底座构建,人工智能高质量数据集的需求量、交易量激增,已成为数据流通最活跃的领域。不过,高质量数据集的建设、流通环节均面临诸多问题,目前数据交易所并非模型语料最主要的采购途径。需求
- 暑假算法日记第三天
目标:刷完灵神专题训练算法题单阶段目标:【算法题单】滑动窗口与双指针LeetCode题目:3439.重新安排会议得到最多空余时间I2134.最少交换次数来组合所有的1II1297.子串的最大出现次数2653.滑动子数组的美丽值1888.使二进制字符串字符交替的最少反转次数567.字符串的排列438.找到字符串中所有字母异位词30.串联所有单词的子串2156.查找给定哈希值的子串其他:今日总结往期打
- android 音量调整
盼雨落,等风起
安卓audio音视频
1流程图2audio_policy_volumes.xml阐述了流跟device的音量范围【AndroidAudio】5、EngineBase加载音量曲线和策略【基于AndroidQ】1.按键处理1.1从输入子系统到音频子系统的处理按键会从inputReader的getEvent到inputDisptacher最后到ViewRootimpl中的ViewPostImeInputStage::proc
- 容器革命:Docker 技术深度解析与未来趋势
小红花大酒店
Docker技术探秘docker容器运维
容器革命:Docker技术深度解析与未来趋势一、容器化技术的颠覆性价值在云计算与微服务架构蓬勃发展的今天,Docker作为容器化技术的代表,正深刻改变着软件交付的范式。传统虚拟机(VM)需要为每个应用实例配备完整的操作系统,导致资源浪费和启动延迟(分钟级)。而Docker通过操作系统级虚拟化,将应用及其依赖打包成轻量级容器,实现了秒级启动和MB级资源占用。这种技术突破使得开发团队能够以标准化方式构
- 2025 API 开发管理工具 Apipost 与 Apifox 全维度对比
在当今数字化转型的浪潮下,API开发与管理对于各类项目的成功实施至关重要。Apipost和Apifox两款API开发管理工具,各自有着独特的功能特性。本文将从多个维度对它们进行深入对比,为研发、测试人员提供全面的参考。一、API设计在大型企业级项目中,API设计的复杂性和定制性要求极高。以金融行业为例,不同法人行的业务规则差异巨大,从账户管理到交易处理,每个环节都需要精确且个性化的API设计。Ap
- 如何在YashanDB中实现自动化备份?
数据库
引言在现代数据库管理系统中,数据的安全性和可恢复性越来越受到重视。尤其是在数据可能因人为失误、硬件故障或网络问题而丢失的情况下,自动化备份解决方案显得尤为重要。YashanDB作为一款高性能的关系型数据库,支持多种备份策略以确保数据的安全性和一致性。本文将深入探讨YashanDB的备份机制、支持的备份类型及如何实现自动化备份策略的具体步骤,旨在帮助数据库管理员和技术人员有效管理其数据备份工作。Ya
- 如何在YashanDB中实现数据分区管理
数据库
在现代数据库系统中,随着数据量的持续增长以及业务需求的不断演变,如何高效、灵活地管理数据成为了重要的技术挑战。数据分区管理作为应对大规模数据存储的有效策略,能够显著提升数据库的性能和可管理性。数据分区技术通过将大型表拆分成smallermanageableunits(即分区),为查询、更新和维护提供了更高效的操作机制。本文将深入探讨如何在YashanDB数据库中实现有效的数据分区管理。分区管理的核
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文