本文转载自https://www.jianshu.com/p/7e31c1cbfa6f
cookie:
浏览器支持的存储方式
key-value
http无状态请求,两次请求没有联系
session的工作原理
(1)当一个session第一次被启用时,一个唯一的标识被存储于本地的cookie中。
(2)首先使用session_start()函数,从session仓库中加载已经存储的session变量。
(3)通过使用session_register()函数注册session变量。
(4)脚本执行结束时,未被销毁的session变量会被自动保存在本地一定路径下的session库中.
http状态码
获取crsftoken
def get_xsrf():
#获取xsrf code
response = requests.get("https://www.zhihu.com",headers =header)
# # print(response.text)
# text =''
match_obj = re.match('.*name="_xsrf" value="(.*?)"', response.text)
if match_obj:
return (match_obj.group(1))
else:
return ""
python模拟知乎登录代码:
# get_index() # is_login() # get_captcha() zhihu_login("phone", "password") zhihu_login("shouji", "mima")# _*_ coding: utf-8 _*_ import requests try: import cookielib except: import http.cookiejar as cookielib import re __author__ = 'mtianyan' __date__ = '2017/5/23 16:42' import requests try: import cookielib except: import http.cookiejar as cookielib import re session = requests.session() session.cookies = cookielib.LWPCookieJar(filename="cookies.txt") try: session.cookies.load(ignore_discard=True) except: print ("cookie未能加载") agent = "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/53.0.2785.104 Safari/537.36" header = { "HOST":"www.zhihu.com", "Referer": "https://www.zhizhu.com", 'User-Agent': agent } def is_login(): #通过个人中心页面返回状态码来判断是否为登录状态 inbox_url = "https://www.zhihu.com/question/56250357/answer/148534773" response = session.get(inbox_url, headers=header, allow_redirects=False) if response.status_code != 200: return False else: return True def get_xsrf(): #获取xsrf code response = session.get("https://www.zhihu.com", headers=header) response_text = response.text #reDOTAll 匹配全文 match_obj = re.match('.*name="_xsrf" value="(.*?)"', response_text, re.DOTALL) xsrf = '' if match_obj: xsrf = (match_obj.group(1)) return xsrf def get_index(): response = session.get("https://www.zhihu.com", headers=header) with open("index_page.html", "wb") as f: f.write(response.text.encode("utf-8")) print ("ok") def get_captcha(): import time t = str(int(time.time()*1000)) captcha_url = "https://www.zhihu.com/captcha.gif?r={0}&type=login".format(t) t = session.get(captcha_url, headers=header) with open("captcha.jpg","wb") as f: f.write(t.content) f.close()
from PIL import Image try: im = Image.open('captcha.jpg') im.show() im.close() except: pass captcha = input("输入验证码\n>") return captcha
def zhihu_login(account, password):
#知乎登录
if re.match(“^1\d{10}”,account):
print (“手机号码登录”)
post_url = “https://www.zhihu.com/login/phone_num”
post_data = {
“_xsrf”: get_xsrf(),
“phone_num”: account,
“password”: password,
“captcha”:get_captcha()
}
else:
if “@” in account:
#判断用户名是否为邮箱
print(“邮箱方式登录”)
post_url = “https://www.zhihu.com/login/email”
post_data = {
“_xsrf”: get_xsrf(),
“email”: account,
“password”: password
}response_text = session.post(post_url, data=post_data, headers=header) session.cookies.save()
scrapy genspider zhihu www.zhihu.com
因为知乎我们需要先进行登录,所以我们重写它的start_requests
def start_requests(self):
return [scrapy.Request('https://www.zhihu.com/#signin', headers=self.headers, callback=self.login)]
下载首页然后回调login函数。
login函数请求验证码并回调login_after_captcha函数.此处通过meta将post_data传送出去,后面的回调函数来用。
def login(self, response):
response_text = response.text
#获取xsrf。
match_obj = re.match('.*name="_xsrf" value="(.*?)"', response_text, re.DOTALL)
xsrf = ''
if match_obj:
xsrf = (match_obj.group(1))
if xsrf:
post_url = "https://www.zhihu.com/login/phone_num"
post_data = {
"_xsrf": xsrf,
"phone_num": "phone",
"password": "password",
"captcha": ""
}
import time
t = str(int(time.time() * 1000))
captcha_url = "https://www.zhihu.com/captcha.gif?r={0}&type=login".format(t)
#请求验证码并回调login_after_captcha.
yield scrapy.Request(captcha_url, headers=self.headers,
meta={"post_data":post_data}, callback=self.login_after_captcha)
def login_after_captcha(self, response):
with open("captcha.jpg", "wb") as f:
f.write(response.body)
f.close()
from PIL import Image
try:
im = Image.open('captcha.jpg')
im.show()
im.close()
except:
pass
captcha = input("输入验证码\n>")
post_data = response.meta.get("post_data", {})
post_url = "https://www.zhihu.com/login/phone_num"
post_data["captcha"] = captcha
return [scrapy.FormRequest(
url=post_url,
formdata=post_data,
headers=self.headers,
callback=self.check_login
)]
源码中的startrequest:
def start_requests(self):
for url in self.start_urls:
yield self.make_requests_from_url(url)
我们将原本的start_request的代码放在了现在重写的,回调链最后的check_login
def check_login(self, response):
#验证服务器的返回数据判断是否成功
text_json = json.loads(response.text)
if "msg" in text_json and text_json["msg"] == "登录成功":
for url in self.start_urls:
yield scrapy.Request(url, dont_filter=True, headers=self.headers)
上图为知乎答案版本1
上图为知乎答案版本2
设置数据表字段
问题字段 | 回答字段 |
---|---|
zhihu_id | zhihu_id |
topics | url |
url | question_id |
title | author_id |
content | content |
answer_num | parise_num |
comments_num | comments_num |
watch_user_num | create_time |
click_num | update_time |
crawl_time | crawl_time |
知乎url分析
点具体问题下查看更多。
可获得接口:
https://www.zhihu.com/api/v4/questions/25914034/answers?include=data%5B%2A%5D.is_normal%2Cis_collapsed%2Ccollapse_reason%2Cis_sticky%2Ccollapsed_by%2Csuggest_edit%2Ccomment_count%2Ccan_comment%2Ccontent%2Ceditable_content%2Cvoteup_count%2Creshipment_settings%2Ccomment_permission%2Cmark_infos%2Ccreated_time%2Cupdated_time%2Creview_info%2Crelationship.is_authorized%2Cis_author%2Cvoting%2Cis_thanked%2Cis_nothelp%2Cupvoted_followees%3Bdata%5B%2A%5D.author.follower_count%2Cbadge%5B%3F%28type%3Dbest_answerer%29%5D.topics&limit=20&offset=43&sort_by=default
重点参数:
offset=43
isend = true
next
href=”/question/25460323”
all_urls = [parse.urljoin(response.url, url) for url in all_urls]
def parse(self, response):
"""
提取出html页面中的所有url 并跟踪这些url进行一步爬取
如果提取的url中格式为 /question/xxx 就下载之后直接进入解析函数
"""
all_urls = response.css("a::attr(href)").extract()
all_urls = [parse.urljoin(response.url, url) for url in all_urls]
#使用lambda函数对于每一个url进行过滤,如果是true放回列表,返回false去除。
all_urls = filter(lambda x:True if x.startswith("https") else False, all_urls)
for url in all_urls:
match_obj = re.match("(.*zhihu.com/question/(\d+))(/|$).*", url)
if match_obj:
# 如果提取到question相关的页面则下载后交由提取函数进行提取
request_url = match_obj.group(1)
yield scrapy.Request(request_url, headers=self.headers, callback=self.parse_question)
else:
# 如果不是question页面则直接进一步跟踪
yield scrapy.Request(url, headers=self.headers, callback=self.parse)
item要用到的方法ArticleSpider\utils\common.py:
def extract_num(text):
#从字符串中提取出数字
match_re = re.match(".*?(\d+).*", text)
if match_re:
nums = int(match_re.group(1))
else:
nums = 0
return nums
setting.py中设置
SQL_DATETIME_FORMAT = "%Y-%m-%d %H:%M:%S" SQL_DATE_FORMAT = "%Y-%m-%d"
使用:
from ArticleSpider.settings import SQL_DATETIME_FORMAT
知乎的问题 item
class ZhihuQuestionItem(scrapy.Item):
#知乎的问题 item
zhihu_id = scrapy.Field()
topics = scrapy.Field()
url = scrapy.Field()
title = scrapy.Field()
content = scrapy.Field()
answer_num = scrapy.Field()
comments_num = scrapy.Field()
watch_user_num = scrapy.Field()
click_num = scrapy.Field()
crawl_time = scrapy.Field()
def get_insert_sql(self):
#插入知乎question表的sql语句
insert_sql = """
insert into zhihu_question(zhihu_id, topics, url, title, content, answer_num, comments_num,
watch_user_num, click_num, crawl_time
)
VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s)
ON DUPLICATE KEY UPDATE content=VALUES(content), answer_num=VALUES(answer_num), comments_num=VALUES(comments_num),
watch_user_num=VALUES(watch_user_num), click_num=VALUES(click_num)
"""
zhihu_id = self["zhihu_id"][0]
topics = ",".join(self["topics"])
url = self["url"][0]
title = "".join(self["title"])
content = "".join(self["content"])
answer_num = extract_num("".join(self["answer_num"]))
comments_num = extract_num("".join(self["comments_num"]))
if len(self["watch_user_num"]) == 2:
watch_user_num = int(self["watch_user_num"][0])
click_num = int(self["watch_user_num"][1])
else:
watch_user_num = int(self["watch_user_num"][0])
click_num = 0
crawl_time = datetime.datetime.now().strftime(SQL_DATETIME_FORMAT)
params = (zhihu_id, topics, url, title, content, answer_num, comments_num,
watch_user_num, click_num, crawl_time)
return insert_sql, params
知乎问题回答item
class ZhihuAnswerItem(scrapy.Item):
#知乎的问题回答item
zhihu_id = scrapy.Field()
url = scrapy.Field()
question_id = scrapy.Field()
author_id = scrapy.Field()
content = scrapy.Field()
parise_num = scrapy.Field()
comments_num = scrapy.Field()
create_time = scrapy.Field()
update_time = scrapy.Field()
crawl_time = scrapy.Field()
def get_insert_sql(self):
#插入知乎question表的sql语句
insert_sql = """
insert into zhihu_answer(zhihu_id, url, question_id, author_id, content, parise_num, comments_num,
create_time, update_time, crawl_time
) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s)
ON DUPLICATE KEY UPDATE content=VALUES(content), comments_num=VALUES(comments_num), parise_num=VALUES(parise_num),
update_time=VALUES(update_time)
"""
create_time = datetime.datetime.fromtimestamp(self["create_time"]).strftime(SQL_DATETIME_FORMAT)
update_time = datetime.datetime.fromtimestamp(self["update_time"]).strftime(SQL_DATETIME_FORMAT)
params = (
self["zhihu_id"], self["url"], self["question_id"],
self["author_id"], self["content"], self["parise_num"],
self["comments_num"], create_time, update_time,
self["crawl_time"].strftime(SQL_DATETIME_FORMAT),
)
return insert_sql, params
有了两个item之后,我们继续完善我们的逻辑
def parse_question(self, response):
#处理question页面, 从页面中提取出具体的question item
if "QuestionHeader-title" in response.text:
#处理新版本
match_obj = re.match("(.*zhihu.com/question/(\d+))(/|$).*", response.url)
if match_obj:
question_id = int(match_obj.group(2))
item_loader = ItemLoader(item=ZhihuQuestionItem(), response=response)
item_loader.add_css("title", "h1.QuestionHeader-title::text")
item_loader.add_css("content", ".QuestionHeader-detail")
item_loader.add_value("url", response.url)
item_loader.add_value("zhihu_id", question_id)
item_loader.add_css("answer_num", ".List-headerText span::text")
item_loader.add_css("comments_num", ".QuestionHeader-actions button::text")
item_loader.add_css("watch_user_num", ".NumberBoard-value::text")
item_loader.add_css("topics", ".QuestionHeader-topics .Popover div::text")
question_item = item_loader.load_item()
else:
#处理老版本页面的item提取
match_obj = re.match("(.*zhihu.com/question/(\d+))(/|$).*", response.url)
if match_obj:
question_id = int(match_obj.group(2))
item_loader = ItemLoader(item=ZhihuQuestionItem(), response=response)
# item_loader.add_css("title", ".zh-question-title h2 a::text")
item_loader.add_xpath("title", "//*[@id='zh-question-title']/h2/a/text()|//*[@id='zh-question-title']/h2/span/text()")
item_loader.add_css("content", "#zh-question-detail")
item_loader.add_value("url", response.url)
item_loader.add_value("zhihu_id", question_id)
item_loader.add_css("answer_num", "#zh-question-answer-num::text")
item_loader.add_css("comments_num", "#zh-question-meta-wrap a[name='addcomment']::text")
# item_loader.add_css("watch_user_num", "#zh-question-side-header-wrap::text")
item_loader.add_xpath("watch_user_num", "//*[@id='zh-question-side-header-wrap']/text()|//*[@class='zh-question-followers-sidebar']/div/a/strong/text()")
item_loader.add_css("topics", ".zm-tag-editor-labels a::text")
question_item = item_loader.load_item()
yield scrapy.Request(self.start_answer_url.format(question_id, 20, 0), headers=self.headers, callback=self.parse_answer)
yield question_item
处理问题回答提取出需要的字段
def parse_answer(self, reponse):
#处理question的answer
ans_json = json.loads(reponse.text)
is_end = ans_json["paging"]["is_end"]
next_url = ans_json["paging"]["next"]
#提取answer的具体字段
for answer in ans_json["data"]:
answer_item = ZhihuAnswerItem()
answer_item["zhihu_id"] = answer["id"]
answer_item["url"] = answer["url"]
answer_item["question_id"] = answer["question"]["id"]
answer_item["author_id"] = answer["author"]["id"] if "id" in answer["author"] else None
answer_item["content"] = answer["content"] if "content" in answer else None
answer_item["parise_num"] = answer["voteup_count"]
answer_item["comments_num"] = answer["comment_count"]
answer_item["create_time"] = answer["created_time"]
answer_item["update_time"] = answer["updated_time"]
answer_item["crawl_time"] = datetime.datetime.now()
yield answer_item
if not is_end:
yield scrapy.Request(next_url, headers=self.headers, callback=self.parse_answer)
知乎提取字段流程图:
深度优先:
pipelines.py错误处理
插入时错误可通过该方法监控
def handle_error(self, failure, item, spider):
#处理异步插入的异常
print (failure)
改造pipeline使其变得更通用
原本具体硬编码的pipeline
def do_insert(self, cursor, item):
#执行具体的插入
insert_sql = """
insert into jobbole_article(title, url, create_date, fav_nums)
VALUES (%s, %s, %s, %s)
"""
cursor.execute(insert_sql, (item["title"], item["url"], item["create_date"], item["fav_nums"]))
改写后的:
def do_insert(self, cursor, item):
#根据不同的item 构建不同的sql语句并插入到mysql中
insert_sql, params = item.get_insert_sql()
cursor.execute(insert_sql, params)
可选方法一:
if item.__class__.__name__ == "JobBoleArticleItem":
#执行具体的插入
insert_sql = """
insert into jobbole_article(title, url, create_date, fav_nums)
VALUES (%s, %s, %s, %s)
"""
cursor.execute(insert_sql, (item["title"], item["url"], item["create_date"], item["fav_nums"]))
推荐方法:
把sql语句等放到item里面:
jobboleitem类内部方法
def get_insert_sql(self):
insert_sql = """
insert into jobbole_article(title, url, create_date, fav_nums)
VALUES (%s, %s, %s, %s) ON DUPLICATE KEY UPDATE content=VALUES(fav_nums)
"""
params = (self["title"], self["url"], self["create_date"], self["fav_nums"])
return insert_sql, params
知乎问题:
def get_insert_sql(self):
#插入知乎question表的sql语句
insert_sql = """
insert into zhihu_question(zhihu_id, topics, url, title, content, answer_num, comments_num,
watch_user_num, click_num, crawl_time
)
VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s)
ON DUPLICATE KEY UPDATE content=VALUES(content), answer_num=VALUES(answer_num), comments_num=VALUES(comments_num),
watch_user_num=VALUES(watch_user_num), click_num=VALUES(click_num)
"""
zhihu_id = self["zhihu_id"][0]
topics = ",".join(self["topics"])
url = self["url"][0]
title = "".join(self["title"])
content = "".join(self["content"])
answer_num = extract_num("".join(self["answer_num"]))
comments_num = extract_num("".join(self["comments_num"]))
if len(self["watch_user_num"]) == 2:
watch_user_num = int(self["watch_user_num"][0])
click_num = int(self["watch_user_num"][1])
else:
watch_user_num = int(self["watch_user_num"][0])
click_num = 0
crawl_time = datetime.datetime.now().strftime(SQL_DATETIME_FORMAT)
params = (zhihu_id, topics, url, title, content, answer_num, comments_num,
watch_user_num, click_num, crawl_time)
return insert_sql, params
知乎回答:
def get_insert_sql(self):
#插入知乎回答表的sql语句
insert_sql = """
insert into zhihu_answer(zhihu_id, url, question_id, author_id, content, parise_num, comments_num,
create_time, update_time, crawl_time
) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s)
ON DUPLICATE KEY UPDATE content=VALUES(content), comments_num=VALUES(comments_num), parise_num=VALUES(parise_num),
update_time=VALUES(update_time)
"""
create_time = datetime.datetime.fromtimestamp(self["create_time"]).strftime(SQL_DATETIME_FORMAT)
update_time = datetime.datetime.fromtimestamp(self["update_time"]).strftime(SQL_DATETIME_FORMAT)
params = (
self["zhihu_id"], self["url"], self["question_id"],
self["author_id"], self["content"], self["parise_num"],
self["comments_num"], create_time, update_time,
self["crawl_time"].strftime(SQL_DATETIME_FORMAT),
)
return insert_sql, params
第二次爬取到相同数据,更新数据
ON DUPLICATE KEY UPDATE content=VALUES(content), answer_num=VALUES(answer_num), comments_num=VALUES(comments_num),
watch_user_num=VALUES(watch_user_num), click_num=VALUES(click_num)
调试技巧
if match_obj:
#如果提取到question相关的页面则下载后交由提取函数进行提取
request_url = match_obj.group(1)
yield scrapy.Request(request_url, headers=self.headers, callback=self.parse_question)
#方便调试
break
else:
#方便调试
pass
#如果不是question页面则直接进一步跟踪
#方便调试
# yield scrapy.Request(url, headers=self.headers, callback=self.parse)
#方便调试
# yield question_item
错误排查
[key error] title
pipeline中debug定位到哪一个item的错误。