Spark转化和行动操作

1.转化操作

函数名 作用
map() 参数是函数,函数应用于RDD每一个元素,返回值是新的RDD
flatMap() 参数是函数,函数应用于RDD每一个元素,将元素数据进行拆分,变成迭代器,返回值是新的RDD
filter() 参数是函数,函数会过滤掉不符合条件的元素,返回值是新的RDD
distinct() 没有参数,将RDD里的元素进行去重操作
union() 参数是RDD,生成包含两个RDD所有元素的新RDD
intersection() 参数是RDD,求出两个RDD的共同元素
subtract() 参数是RDD,将原RDD里和参数RDD里相同的元素去掉
cartesian() 参数是RDD,求两个RDD的笛卡儿积
val rddInt:RDD[Int] = sc.makeRDD(List(1,2,3,4,5,6,2,5,1))
val rddStr:RDD[String] = sc.parallelize(Array("a","b","c","d","b","a"), 1)
val rddFile:RDD[String] = sc.textFile(path, 1)
 
val rdd01:RDD[Int] = sc.makeRDD(List(1,3,5,3))
val rdd02:RDD[Int] = sc.makeRDD(List(2,4,5,1))
 
/* map操作 */
println("======map操作======")
println(rddInt.map(x => x + 1).collect().mkString(","))
println("======map操作======")
/* filter操作 */
println("======filter操作======")
println(rddInt.filter(x => x > 4).collect().mkString(","))
println("======filter操作======")
/* flatMap操作 */
println("======flatMap操作======")
println(rddFile.flatMap { x => x.split(",") }.first())
println("======flatMap操作======")
/* distinct去重操作 */
println("======distinct去重======")
println(rddInt.distinct().collect().mkString(","))
println(rddStr.distinct().collect().mkString(","))
println("======distinct去重======")
/* union操作 */
println("======union操作======")
println(rdd01.union(rdd02).collect().mkString(","))
println("======union操作======")
/* intersection操作 */
println("======intersection操作======")
println(rdd01.intersection(rdd02).collect().mkString(","))
println("======intersection操作======")
/* subtract操作 */
println("======subtract操作======")
println(rdd01.subtract(rdd02).collect().mkString(","))
println("======subtract操作======")
/* cartesian操作 */
println("======cartesian操作======")
println(rdd01.cartesian(rdd02).collect().mkString(","))
println("======cartesian操作======")

1.行动操作

函数名 作用
collect() 返回RDD所有元素
count() RDD里元素个数
countByValue() 各元素在RDD中出现次数
reduce() 并行整合所有RDD数据,例如求和操作
fold(0)(func) 和reduce功能一样,不过fold带有初始值
aggregate(0)(seqOp,combop) 和reduce功能一样,但是返回的RDD数据类型和原RDD不一样
foreach(func) 对RDD每个元素都是使用特定函数
val rddInt:RDD[Int] = sc.makeRDD(List(1,2,3,4,5,6,2,5,1))
val rddStr:RDD[String] = sc.parallelize(Array("a","b","c","d","b","a"), 1)
 
/* count操作 */
println("======count操作======")
println(rddInt.count())
println("======count操作======")  
/* countByValue操作 */
println("======countByValue操作======")
println(rddInt.countByValue())
println("======countByValue操作======")
/* reduce操作 */
println("======countByValue操作======")
println(rddInt.reduce((x ,y) => x + y))
println("======countByValue操作======")
/* fold操作 */
println("======fold操作======")
println(rddInt.fold(0)((x ,y) => x + y))
println("======fold操作======")
/* aggregate操作 */
println("======aggregate操作======")
val res:(Int,Int) = rddInt.aggregate((0,0))((x,y) => (x._1 + x._2,y),(x,y) => (x._1 + x._2,y._1 + y._2))
println(res._1 + "," + res._2)
println("======aggregate操作======")
/* foeach操作 */
println("======foeach操作======")
println(rddStr.foreach { x => println(x) })
println("======foeach操作======")

你可能感兴趣的:(Spark转化和行动操作)