pytorch官网上两个例程

pytorch官网上两个例程

caffe用起来太笨重了,最近转到pytorch,用起来实在不要太方便,上手也非常快,这里贴一下pytorch官网上的两个小例程,掌握一下它的用法:

 

例程一:利用nn  这个module构建网络,实现一个图像分类的小功能;

链接:http://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

复制代码
# -*- coding:utf-8 -*-
import torch
from torch.autograd import Variable
import torchvision
import torchvision.transforms as transforms
#数据预处理:转换为Tensor,归一化,设置训练集和验证集以及加载子进程数目
transform = transforms.Compose([transforms.ToTensor() , transforms.Normalize((0.5 , 0.5 , 0.5) , (0.5 , 0.5 , 0.5))])  #前面参数是均值,后面是标准差
trainset = torchvision.datasets.CIFAR10(root = './data' , train = True , download = True , transform = transform)
trainloader = torch.utils.data.DataLoader(trainset , batch_size = 4 , shuffle = True , num_workers =2)  #num_works = 2表示使用两个子进程加载数据
testset = torchvision.datasets.CIFAR10(root = './data' , train = False , download = True , transform = transform)
testloader = torch.utils.data.DataLoader(testset , batch_size = 4 , shuffle = True , num_workers = 2)
classes = ('plane' , 'car' , 'bird' , 'cat' , 'deer' , 'dog' , 'frog' , 'horse' , 'ship' , 'truck')

import matplotlib.pyplot as plt
import numpy as np
import pylab

def imshow(img):
img
= img / 2 + 0.5
npimg
= img.numpy()
plt.imshow(np.transpose(npimg , (
1 , 2 , 0)))
pylab.show()

dataiter = iter(trainloader)
images , labels
= dataiter.next()
for i in range(4):
p
= plt.subplot()
p.set_title(
label: %5s % classes[labels[i]])
imshow(images[i])
#构建网络
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

class Net(nn.Module):
def init(self):
super(Net , self).
init()
self.conv1
= nn.Conv2d(3 , 6 , 5)
self.pool
= nn.MaxPool2d(2 , 2)
self.conv2
= nn.Conv2d(6 , 16 , 5)
self.fc1
= nn.Linear(16 * 5 * 5 , 120)
self.fc2
= nn.Linear(120 , 84)
self.fc3
= nn.Linear(84 , 10)

def forward(self , x):
    x = self.pool(F.relu(self.conv1(x)))
    x = self.pool(F.relu(self.conv2(x)))
    x = x.view(-1 , 16 * 5 * 5)  #利用view函数使得conv2层输出的16*5*5维的特征图尺寸变为400大小从而方便后面的全连接层的连接
    x = F.relu(self.fc1(x))
    x = F.relu(self.fc2(x))
    x = self.fc3(x)
    return x

net = Net()
net.cuda()

#define loss function
criterion = nn.CrossEntropyLoss()
optimizer
= optim.SGD(net.parameters() , lr = 0.001 , momentum = 0.9)

#train the Network
for epoch in range(2):
running_loss
= 0.0
for i , data in enumerate(trainloader , 0):
inputs , labels
= data
inputs , labels
= Variable(inputs.cuda()) , Variable(labels.cuda())
optimizer.zero_grad()
#forward + backward + optimizer
outputs = net(inputs)
loss
= criterion(outputs , labels)
loss.backward()
optimizer.step()

    running_loss += loss.data[0]
    if i % 2000 == 1999:
        print('[%d , %5d] loss: %.3f' % (epoch + 1 , i + 1 , running_loss / 2000))
        running_loss = 0.0

print(Finished Training)

dataiter = iter(testloader)
images , labels
= dataiter.next()
imshow(torchvision.utils.make_grid(images))
print(GroundTruth: , '.join(classes[labels[j]] for j in range(4)))

outputs = net(Variable(images.cuda()))

_ , predicted = torch.max(outputs.data , 1)
print(Predicted: , .join(%5s % classes[predicted[j]] for j in range(4)))

correct = 0
total
= 0
for data in testloader:
images , labels
= data
outputs
= net(Variable(images.cuda()))
_ , predicted
= torch.max(outputs.data , 1)
correct
+= (predicted == labels.cuda()).sum()
total
+= labels.size(0)
print(Accuracy of the network on the 10000 test images: %d %% % (100 * correct / total))

class_correct = torch.ones(10).cuda()
class_total
= torch.ones(10).cuda()
for data in testloader:
images , labels
= data
outputs
= net(Variable(images.cuda()))
_ , predicted
= torch.max(outputs.data , 1)
c
= (predicted == labels.cuda()).squeeze()
#print(predicted.data[0])
for i in range(4):
label
= labels[i]
class_correct[label]
+= c[i]
class_total[label]
+= 1

for i in range(10):
print(Accuracy of %5s : %2d %% % (classes[i] , 100 * class_correct[i] / class_total[i]))

复制代码

 

例程二:在resnet18的预训练模型上进行finetune,然后实现一个ants和bees的二分类功能:

链接:http://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html

复制代码
# -*- coding:utf-8 -*-
from __future__ import print_function , division
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
import numpy as np
import torchvision
from torchvision import datasets , models , transforms
import matplotlib.pyplot as plt
import time
import os
import pylab

#data process
data_transforms = {
train : transforms.Compose([
transforms.RandomSizedCrop(
224) ,
transforms.RandomHorizontalFlip() ,
transforms.ToTensor() ,
transforms.Normalize([
0.485 , 0.456 , 0.406] , [0.229 , 0.224 , 0.225])
]) ,
val : transforms.Compose([
transforms.Scale(
256) ,
transforms.CenterCrop(
224) ,
transforms.ToTensor() ,
transforms.Normalize([
0.485 , 0.456 , 0.406] , [0.229 , 0.224 , 0.225])
]) ,
}

data_dir = hymenoptera_data
image_datasets
= {x : datasets.ImageFolder(os.path.join(data_dir , x) , data_transforms[x]) for x in [train , val]}
dataloders
= {x : torch.utils.data.DataLoader(image_datasets[x] , batch_size = 4 , shuffle = True , num_workers = 4) for x in [train , val]}
dataset_sizes
= {x : len(image_datasets[x]) for x in [train , val]}
class_names
= image_datasets[train].classes
print(class_names)
use_gpu
= torch.cuda.is_available()
#show several images
def imshow(inp , title = None):
inp
= inp.numpy().transpose((1 , 2 , 0))
mean
= np.array([0.485 , 0.456 , 0.406])
std
= np.array([0.229 , 0.224 , 0.225])
inp
= std * inp + mean
inp
= np.clip(inp , 0 , 1)
plt.imshow(inp)
if title is not None:
plt.title(title)
pylab.show()
plt.pause(
0.001)

inputs , classes = next(iter(dataloders[train]))
out
= torchvision.utils.make_grid(inputs)
imshow(out , title
= [class_names[x] for x in classes])
#train the model
def train_model(model , criterion , optimizer , scheduler , num_epochs = 25):

since = time.time()
best_model_wts = model.state_dict()  #Returns a dictionary containing a whole state of the module.
best_acc = 0.0

for epoch in range(num_epochs):
    print('Epoch {}/{}'.format(epoch , num_epochs - 1))
    print('-' * 10)
    #set the mode of model
    for phase in ['train' , 'val']:
        if phase == 'train':
            scheduler.step()  #about lr and gamma
            model.train(True)  #set model to training mode
        else:
            model.train(False)  #set model to evaluate mode
running_loss = 0.0 running_corrects = 0
        #Iterate over data
        for data in dataloders[phase]:
            inputs , labels = data
            if use_gpu:
                inputs = Variable(inputs.cuda())
                labels = Variable(labels.cuda())
            else:
                inputs = Variable(inputs)
                lables = Variable(labels)
            optimizer.zero_grad()
            #forward
            outputs = model(inputs)
            _ , preds = torch.max(outputs , 1)
            loss = criterion(outputs , labels)
            #backward
            if phase == 'train':
                loss.backward()  #backward of gradient
                optimizer.step()  #strategy to drop
            running_loss += loss.data[0]
            running_corrects += torch.sum(preds.data == labels.data)

        epoch_loss = running_loss / dataset_sizes[phase]
        epoch_acc = running_corrects / dataset_sizes[phase]
        print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase , epoch_loss , epoch_acc))

        if phase == 'val' and epoch_acc > best_acc:
            best_acc = epoch_acc
            best_model_wts = model.state_dict()
    print()

time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60 , time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
model.load_state_dict(best_model_wts)
return model

#visualizing the model predictions
def visualize_model(model , num_images = 6):
images_so_far
= 0
fig
= plt.figure()

for i , data in enumerate(dataloders['val']):
    inputs , labels = data
    if use_gpu:
        inputs , labels = Variable(inputs.cuda()) , Variable(labels.cuda())
    else:
        inputs , labels = Variable(inputs) , Variable(labels)

    outputs = model(inputs)
    _ , preds = torch.max(outputs.data , 1)
    for j in range(inputs.size()[0]):
        images_so_far += 1
        ax = plt.subplot(num_images // 2 , 2 , images_so_far)
        ax.axis('off')
        ax.set_title('predicted: {}'.format(class_names[preds[j]]))
        imshow(inputs.cpu().data[j])

        if images_so_far == num_images:
            return

#Finetuning the convnet
from torchvision.models.resnet import model_urls
model_urls[
resnet18] = model_urls[resnet18].replace(https:// , http://)
model_ft
= models.resnet18(pretrained = True)
num_ftrs
= model_ft.fc.in_features
model_ft.fc
= nn.Linear(num_ftrs , 2)
if use_gpu:
model_ft
= model_ft.cuda()
criterion
= nn.CrossEntropyLoss()
optimizer_ft
= optim.SGD(model_ft.parameters() , lr = 0.001 , momentum = 0.9)
exp_lr_scheduler
= lr_scheduler.StepLR(optimizer_ft , step_size = 7 , gamma = 0.1)
#start finetuning
model_ft = train_model(model_ft , criterion , optimizer_ft , exp_lr_scheduler , num_epochs = 25)
torch.save(model_ft.state_dict() ,
/home/zf/resnet18.pth)
visualize_model(model_ft)

复制代码

 当然finetune的话有两种方式:在这个例子里

(1)只修改最后一层全连接层,输出类数改为2,然后在预训练模型上进行finetune;

(2)固定全连接层前面的卷积层参数,也就是它们不反向传播,只对最后一层进行反向传播;实现的时候前面这些层的requires_grad就设为False就OK了;

代码见下:

复制代码
model_conv = torchvision.models.resnet18(pretrained=True)
for param in model_conv.parameters():
    param.requires_grad = False

# Parameters of newly constructed modules have requires_grad=True by default
num_ftrs = model_conv.fc.in_features
model_conv.fc
= nn.Linear(num_ftrs, 2)

if use_gpu:
model_conv
= model_conv.cuda()

criterion = nn.CrossEntropyLoss()

# Observe that only parameters of final layer are being optimized as
#
opoosed to before.
optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)

# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
model_conv
= train_model(model_conv, criterion, optimizer_conv,
exp_lr_scheduler, num_epochs
=25)

复制代码

 

可以说,从构建网络,到训练网络,再到测试,由于完全是python风格,实在是太方便了~

 

分类: pytorch
好文要顶 关注我 收藏该文
outthinker
关注 - 9
粉丝 - 95
+加关注
0
0
« 上一篇: ORB feature(O for orientation)
» 下一篇: 图像卷积
	
posted @ 2017-11-06 11:43 outthinker 阅读(5526) 评论(0) 编辑 收藏

你可能感兴趣的:(pytorch官网上两个例程)