Hadoop集群搭建---step3(hadoop三种架构介绍(standAlone,伪分布,分布式安装以及环境搭建)

Hadoop集群搭建—step3(hadoop三种架构介绍(standAlone,伪分布,分布式安装以及环境搭建)

前言:Hadoop有多种版本,流行的版本有Apache Hadoop,CDH Hadoop , HDP Hadoop, MapR Hadoop。每个版本的Hadoop都提供三种集群搭建架构,一种是将Hadoop安装在一台机器下的称之为StandAlone环境;一种是将Hadoop安装在多台机器下的(有1个NN多个DN,1个RM多个NM)称之为伪分布式环境;一种是在第二种的基础上对NN&RN实现HA的,称之为全分布式。

相关软件版本:

​ jdk:jdk1.8.0_141

​ hadoop:Apache Hadoop_2.7.5

​ zookeeper:zookeeper_3.4.9

接下来以Apache Hadoop介绍这三种搭建模式如何实现。apache软件下载地址:http://archive.apache.org/dist/

​ hadoop 官方文档:http://hadoop.apache.org/docs/

注意

hadoop的配置文件存放在 hadoop/etc/hadoop 目录下,各个文件的主要作用如下:

  • core-site:核心配置文件,主要定义了文件访问的格式,如hdfs://ip:8020/…
  • hadoop-env: 主要配置java所在路径
  • hdfs-site: 定义hdfs相关配置
  • mapred-site:定义mapreduce相关配置
  • yarn-site:定义RN资源调度
  • slaves:定义从节点,如DN, NM.

配置文件的参考文档 :https://hadoop.apache.org/docs/r2.6.0/

第一种:standAlone(了解,一般不用)

服务分布:

运行服务 服务器IP
NameNode 192.168.52.100
SecondaryNameNode 192.168.52.100
DataNode 192.168.52.100
ResourceManager 192.168.52.100
NodeManager 192.168.52.100

1.下载apache hadoop并上传到服务器

下载链接:

http://archive.apache.org/dist/hadoop/common/hadoop-2.7.5/hadoop-2.7.5.tar.gz

解压:

cd /export/softwares
tar -zxvf hadoop-2.7.5.tar.gz -C ../servers/

Hadoop集群搭建---step3(hadoop三种架构介绍(standAlone,伪分布,分布式安装以及环境搭建)_第1张图片

2.修改配置文件

A.修改core-site.xml

cd  /export/servers/hadoop-2.7.5/etc/hadoop
vim  core-site.xml
<configuration>
	<property>
		<name>fs.default.namename>
		<value>hdfs://192.168.52.100:8020value>
	property>
	<property>
		<name>hadoop.tmp.dirname>
		<value>/export/servers/hadoop-2.7.5/hadoopDatas/tempDatasvalue>
	property>
	
	<property>
		<name>io.file.buffer.sizename>
		<value>4096value>
	property>

	
	<property>
		<name>fs.trash.intervalname>
		<value>10080value>
	property>
configuration>

B.修改hdfs-site.xml

cd  /export/servers/hadoop-2.7.5/etc/hadoop
vim hdfs-site.xml
<configuration>
	 
	
	 
	 <property>
			<name>dfs.namenode.secondary.http-addressname>
			<value>node01:50090value>
	property>

	<property>
		<name>dfs.namenode.http-addressname>
		<value>node01:50070value>
	property>
	<property>
		<name>dfs.namenode.name.dirname>
		<value>file:///export/servers/hadoop-2.7.5/hadoopDatas/namenodeDatas,file:///export/servers/hadoop-2.7.5/hadoopDatas/namenodeDatas2value>
	property>
	
	<property>
		<name>dfs.datanode.data.dirname>
		<value>file:///export/servers/hadoop-2.7.5/hadoopDatas/datanodeDatas,file:///export/servers/hadoop-2.7.5/hadoopDatas/datanodeDatas2value>
	property>
	
	<property>
		<name>dfs.namenode.edits.dirname>
		<value>file:///export/servers/hadoop-2.7.5/hadoopDatas/nn/editsvalue>
	property>
	

	<property>
		<name>dfs.namenode.checkpoint.dirname>
		<value>file:///export/servers/hadoop-2.7.5/hadoopDatas/snn/namevalue>
	property>
	<property>
		<name>dfs.namenode.checkpoint.edits.dirname>
		<value>file:///export/servers/hadoop-2.7.5/hadoopDatas/dfs/snn/editsvalue>
	property>

	<property>
		<name>dfs.replicationname>
		<value>3value>
	property>

	<property>
		<name>dfs.permissionsname>
		<value>falsevalue>
	property>

<property>
		<name>dfs.blocksizename>
		<value>134217728value>
	property>
configuration>

C.修改hadoop-env.sh

cd  /export/servers/hadoop-2.7.5/etc/hadoop
vim  hadoop-env.sh
vim  hadoop-env.sh
export JAVA_HOME=/export/servers/jdk1.8.0_141

D.修改mapred-site.xml

cd  /export/servers/hadoop-2.7.5/etc/hadoop
vim  mapred-site.xml
<configuration>
	<property>
		<name>mapreduce.framework.namename>
		<value>yarnvalue>
	property>

	<property>
		<name>mapreduce.job.ubertask.enablename>
		<value>truevalue>
	property>
	
	<property>
		<name>mapreduce.jobhistory.addressname>
		<value>node01:10020value>
	property>

	<property>
		<name>mapreduce.jobhistory.webapp.addressname>
		<value>node01:19888value>
	property>
configuration>

D.修改yarn-site.xml

cd  /export/servers/hadoop-2.7.5/etc/hadoop
vim  yarn-site.xml
<configuration>
	<property>
		<name>yarn.resourcemanager.hostnamename>
		<value>node01value>
	property>
	<property>
		<name>yarn.nodemanager.aux-servicesname>
		<value>mapreduce_shufflevalue>
	property>
	
	<property>
		<name>yarn.log-aggregation-enablename>
		<value>truevalue>
	property>
	<property>
		<name>yarn.log-aggregation.retain-secondsname>
		<value>604800value>
	property>
configuration>

E.修改mapred-env.sh

cd  /export/servers/hadoop-2.7.5/etc/hadoop
vim  mapred-env.sh

添加以下内容:

​ export JAVA_HOME=/export/servers/jdk1.8.0_141

F.修改slaves

cd  /export/servers/hadoop-2.7.5/etc/hadoop
vim   slaves

添加:

​ localhost

3.启动集群

注意: 首次启动 HDFS 时,必须对其进行格式化操作。 本质上是一些清理和准备工作,因为此时的 HDFS 在物理上还是不存在的。

hdfs namenode -format 或者 hadoop namenode –format

A.创建数据存放文件夹,便于管理数据:

cd  /export/servers/hadoop-2.7.5
mkdir -p /export/servers/hadoop-2.7.5/hadoopDatas/tempDatas
mkdir -p /export/servers/hadoop-2.7.5/hadoopDatas/namenodeDatas
mkdir -p /export/servers/hadoop-2.7.5/hadoopDatas/namenodeDatas2
mkdir -p /export/servers/hadoop-2.7.5/hadoopDatas/datanodeDatas
mkdir -p /export/servers/hadoop-2.7.5/hadoopDatas/datanodeDatas2
mkdir -p /export/servers/hadoop-2.7.5/hadoopDatas/nn/edits
mkdir -p /export/servers/hadoop-2.7.5/hadoopDatas/snn/name
mkdir -p /export/servers/hadoop-2.7.5/hadoopDatas/dfs/snn/edits

B.启动:

cd  /export/servers/hadoop-2.7.5/
bin/hdfs namenode -format
sbin/start-dfs.sh
sbin/start-yarn.sh
sbin/mr-jobhistory-daemon.sh start historyserver

C.三个端口查看界面

http://node01:50070/explorer.html#/ 查看hdfs

http://node01:8088/cluster 查看yarn集群

http://node01:19888/jobhistory 查看历史完成的任务

第二种:伪分布式环境搭建(适用于学习测试开发集群模式)

服务分布:

服务器IP 192.168.52.100 192.168.52.110 192.168.52.120
主机名 node01.hadoop.com node02.hadoop.com node03.hadoop.com
NameNode
SecondaryNameNode
dataNode
ResourceManager
NodeManager

1.在standAlone的基础上搭建

A.停止单节点集群,删除/export/servers/hadoop-2.7.5/hadoopDatas文件夹,然后重新创建文件夹:

cd /export/servers/hadoop-2.7.5
sbin/stop-dfs.sh
sbin/stop-yarn.sh
sbin/mr-jobhistory-daemon.sh stop historyserver

B.删除hadoopDatas然后重新创建文件夹:

rm  -rf  /export/servers/hadoop-2.7.5/hadoopDatas

C.重新创建文件夹:

mkdir -p /export/servers/hadoop-2.7.5/hadoopDatas/tempDatas
mkdir -p /export/servers/hadoop-2.7.5/hadoopDatas/namenodeDatas
mkdir -p /export/servers/hadoop-2.7.5/hadoopDatas/namenodeDatas2
mkdir -p /export/servers/hadoop-2.7.5/hadoopDatas/datanodeDatas
mkdir -p /export/servers/hadoop-2.7.5/hadoopDatas/datanodeDatas2
mkdir -p /export/servers/hadoop-2.7.5/hadoopDatas/nn/edits
mkdir -p /export/servers/hadoop-2.7.5/hadoopDatas/snn/name
mkdir -p /export/servers/hadoop-2.7.5/hadoopDatas/dfs/snn/edits

2.修改slaves文件,然后将安装包发送到其他机器,重新启动集群

A.修改slaves文件:

cd  /export/servers/hadoop-2.7.5/etc/hadoop
vim slaves

修改为:

​ node01

​ node02

​ node03

B.安装包的分发:

cd  /export/servers/
scp -r hadoop-2.7.5 node02:$PWD
scp -r hadoop-2.7.5 node03:$PWD

C.启动集群(只需在第一台机器上执行命令,集群都可启动):

cd  /export/servers/hadoop-2.7.5
bin/hdfs namenode -format
sbin/start-dfs.sh
sbin/start-yarn.sh
sbin/mr-jobhistory-daemon.sh start historyserver

第三种:分布式环境搭建(适用于工作当中正式环境搭建)

使用完全分布式,实现namenode高可用,ResourceManager的高可用

服务分布:

192.168.1.100 192.168.1.110 192.168.1.120
zookeeper zk zk zk
HDFS JournalNode JournalNode JournalNode
NameNode NameNode
ZKFC ZKFC
DataNode DataNode DataNode
YARN ResourceManager ResourceManager
NodeManager NodeManager NodeManager
MapReduce JobHistoryServer

1.安装包解压

cd /export/softwares
tar -zxvf hadoop-2.7.5.tar.gz -C ../servers/

2.配置文件的修改

A.修改core-site.xml

cd /export/servers/hadoop-2.7.5/etc/hadoop
vim core-site.xml
<configuration>

	<property>
		<name>ha.zookeeper.quorumname>
		<value>node01:2181,node02:2181,node03:2181value>
	property>
 
	<property>
		<name>fs.defaultFSname>
		<value>hdfs://nsvalue>
	property>
 
	<property>
		<name>hadoop.tmp.dirname>
		<value>/export/servers/hadoop-2.7.5/data/tmpvalue>
	property>
	 
	<property>
		<name>fs.trash.intervalname>
		<value>10080value>
	property>
configuration>

B.修改hdfs-site.xml

cd /export/servers/hadoop-2.7.5/etc/hadoop
vim hdfs-site.xml
<configuration>

	<property>
		<name>dfs.nameservicesname>
		<value>nsvalue>
	property>

	<property>
		<name>dfs.ha.namenodes.nsname>
		<value>nn1,nn2value>
	property>

	
	<property>
		<name>dfs.namenode.rpc-address.ns.nn1name>
		<value>node01:8020value>
	property>
	
	<property>
		<name>dfs.namenode.rpc-address.ns.nn2name>
		<value>node02:8020value>
	property>
	
	<property>
		<name>dfs.namenode.servicerpc-address.ns.nn1name>
		<value>node01:8022value>
	property>
	
	<property>
		<name>dfs.namenode.servicerpc-address.ns.nn2name>
		<value>node02:8022value>
	property>
	
	
	<property>
		<name>dfs.namenode.http-address.ns.nn1name>
		<value>node01:50070value>
	property>
	
	<property>
		<name>dfs.namenode.http-address.ns.nn2name>
		<value>node02:50070value>
	property>
	
	
	<property>
		<name>dfs.namenode.shared.edits.dirname>
		<value>qjournal://node01:8485;node02:8485;node03:8485/ns1value>
	property>
	
	<property>
		<name>dfs.client.failover.proxy.provider.nsname>
		<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvidervalue>
	property>
	
	
	<property>
		<name>dfs.ha.fencing.methodsname>
		<value>sshfencevalue>
	property>
	
	
	<property>
		<name>dfs.ha.fencing.ssh.private-key-filesname>
		<value>/root/.ssh/id_rsavalue>
	property>
	
	<property>
		<name>dfs.journalnode.edits.dirname>
		<value>/export/servers/hadoop-2.7.5/data/dfs/jnvalue>
	property>
	
	<property>
		<name>dfs.ha.automatic-failover.enabledname>
		<value>truevalue>
	property>
	
	<property>
		<name>dfs.namenode.name.dirname>
		<value>file:///export/servers/hadoop-2.7.5/data/dfs/nn/namevalue>
	property>
	
	<property>
		<name>dfs.namenode.edits.dirname>
		<value>file:///export/servers/hadoop-2.7.5/data/dfs/nn/editsvalue>
	property>
	
	<property>
		<name>dfs.datanode.data.dirname>
		<value>file:///export/servers/hadoop-2.7.5/data/dfs/dnvalue>
	property>
	
	<property>
		<name>dfs.permissionsname>
		<value>falsevalue>
	property>
	
	<property>
		<name>dfs.blocksizename>
		<value>134217728value>
	property>
configuration>

C.修改yarn-site.xml

注意:node03与node02配置不同

cd /export/servers/hadoop-2.7.5/etc/hadoop
vim yarn-site.xml
<configuration>






	<property>
			<name>yarn.log-aggregation-enablename>
			<value>truevalue>
	property>
 

 
<property>
        <name>yarn.resourcemanager.ha.enabledname>
        <value>truevalue>
property>

<property>
        <name>yarn.resourcemanager.cluster-idname>
        <value>myclustervalue>
property>

<property>
        <name>yarn.resourcemanager.ha.rm-idsname>
        <value>rm1,rm2value>
property>

<property>
        <name>yarn.resourcemanager.hostname.rm1name>
        <value>node03value>
property>

<property>
        <name>yarn.resourcemanager.hostname.rm2name>
        <value>node02value>
property>


<property>
        <name>yarn.resourcemanager.address.rm1name>
        <value>node03:8032value>
property>
<property>
        <name>yarn.resourcemanager.scheduler.address.rm1name>
        <value>node03:8030value>
property>
<property>
        <name>yarn.resourcemanager.resource-tracker.address.rm1name>
        <value>node03:8031value>
property>
<property>
        <name>yarn.resourcemanager.admin.address.rm1name>
        <value>node03:8033value>
property>
<property>
        <name>yarn.resourcemanager.webapp.address.rm1name>
        <value>node03:8088value>
property>


<property>
        <name>yarn.resourcemanager.address.rm2name>
        <value>node02:8032value>
property>
<property>
        <name>yarn.resourcemanager.scheduler.address.rm2name>
        <value>node02:8030value>
property>
<property>
        <name>yarn.resourcemanager.resource-tracker.address.rm2name>
        <value>node02:8031value>
property>
<property>
        <name>yarn.resourcemanager.admin.address.rm2name>
        <value>node02:8033value>
property>
<property>
        <name>yarn.resourcemanager.webapp.address.rm2name>
        <value>node02:8088value>
property>

<property>
        <name>yarn.resourcemanager.recovery.enabledname>
        <value>truevalue>
property>

	<property>       
		<name>yarn.resourcemanager.ha.idname>
		<value>rm1value>
       <description>If we want to launch more than one RM in single node, we need this configurationdescription>
	property>
	   
	   
<property>
        <name>yarn.resourcemanager.store.classname>
        <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStorevalue>
property>
<property>
        <name>yarn.resourcemanager.zk-addressname>
        <value>node02:2181,node03:2181,node01:2181value>
        <description>For multiple zk services, separate them with commadescription>
property>
 
<property>
        <name>yarn.resourcemanager.ha.automatic-failover.enabledname>
        <value>truevalue>
        <description>Enable automatic failover; By default, it is enabled only when HA is enabled.description>
property>
<property>
        <name>yarn.client.failover-proxy-providername>
        <value>org.apache.hadoop.yarn.client.ConfiguredRMFailoverProxyProvidervalue>
property>

<property>
        <name>yarn.nodemanager.resource.cpu-vcoresname>
        <value>4value>
property>

<property>
        <name>yarn.nodemanager.resource.memory-mbname>
        <value>512value>
property>

<property>
        <name>yarn.scheduler.minimum-allocation-mbname>
        <value>512value>
property>

<property>
        <name>yarn.scheduler.maximum-allocation-mbname>
        <value>512value>
property>

<property>
        <name>yarn.log-aggregation.retain-secondsname>
        <value>2592000value>
property>

<property>
        <name>yarn.nodemanager.log.retain-secondsname>
        <value>604800value>
property>

<property>
        <name>yarn.nodemanager.log-aggregation.compression-typename>
        <value>gzvalue>
property>

<property>
        <name>yarn.nodemanager.local-dirsname>
        <value>/export/servers/hadoop-2.7.5/yarn/localvalue>
property>

<property>
        <name>yarn.resourcemanager.max-completed-applicationsname>
        <value>1000value>
property>

<property>
        <name>yarn.nodemanager.aux-servicesname>
        <value>mapreduce_shufflevalue>
property>

 
<property>
        <name>yarn.resourcemanager.connect.retry-interval.msname>
        <value>2000value>
property>
configuration>

D.修改mapred-site.xml

cd /export/servers/hadoop-2.7.5/etc/hadoop
vim mapred-site.xml
<configuration>

<property>
        <name>mapreduce.framework.namename>
        <value>yarnvalue>
property>

<property>
        <name>mapreduce.jobhistory.addressname>
        <value>node03:10020value>
property>

<property>
        <name>mapreduce.jobhistory.webapp.addressname>
        <value>node03:19888value>
property>

<property>
        <name>mapreduce.jobtracker.system.dirname>
        <value>/export/servers/hadoop-2.7.5/data/system/jobtrackervalue>
property>

<property>
        <name>mapreduce.map.memory.mbname>
        <value>1024value>
property>


<property>
        <name>mapreduce.reduce.memory.mbname>
        <value>1024value>
property>


<property>
        <name>mapreduce.task.io.sort.mbname>
        <value>100value>
property>
 


<property>
        <name>mapreduce.task.io.sort.factorname>
        <value>10value>
property>

<property>
        <name>mapreduce.reduce.shuffle.parallelcopiesname>
        <value>25value>
property>
<property>
        <name>yarn.app.mapreduce.am.command-optsname>
        <value>-Xmx1024mvalue>
property>

<property>
        <name>yarn.app.mapreduce.am.resource.mbname>
        <value>1536value>
property>

<property>
        <name>mapreduce.cluster.local.dirname>
        <value>/export/servers/hadoop-2.7.5/data/system/localvalue>
property>
configuration>

E.修改slaves

cd /export/servers/hadoop-2.7.5/etc/hadoop
vim slaves

添加:

​ node01

​ node02

​ node03

F.修改hadoop-env.sh

cd /export/servers/hadoop-2.7.5/etc/hadoop
vim hadoop-env.sh

添加:

​ export JAVA_HOME=/export/servers/jdk1.8.0_141

3.集群启动过程

A.将第一台机器的安装包发送到其他机器上

在第一台机器上执行:

cd /export/servers
scp -r hadoop-2.7.5/ node02:$PWD
scp -r hadoop-2.7.5/ node03:$PWD

B.三台机器上共同创建目录

三台机器执行以下命令:

mkdir -p /export/servers/hadoop-2.7.5/data/dfs/nn/name
mkdir -p /export/servers/hadoop-2.7.5/data/dfs/nn/edits
mkdir -p /export/servers/hadoop-2.7.5/data/dfs/nn/name
mkdir -p /export/servers/hadoop-2.7.5/data/dfs/nn/edits

C.更改node02的rm2

第二台机器执行以下命令:

cd /export/servers/hadoop-2.7.5/etc/hadoop
vim  yarn-site.xml

	<property>       
		<name>yarn.resourcemanager.ha.idname>
		<value>rm2value>
       <description>If we want to launch more than one RM in single node, we need this configurationdescription>
	property>

4.启动HDFS过程

node01机器执行以下命令

cd   /export/servers/hadoop-2.7.5
bin/hdfs zkfc -formatZK
sbin/hadoop-daemons.sh start journalnode
bin/hdfs namenode -format
bin/hdfs namenode -initializeSharedEdits -force
sbin/start-dfs.sh

node02上面执行

cd   /export/servers/hadoop-2.7.5
bin/hdfs namenode -bootstrapStandby
sbin/hadoop-daemon.sh start namenode

5.启动yarn过程

node03上面执行:

cd   /export/servers/hadoop-2.7.5
sbin/start-yarn.sh

node02上执行:

cd   /export/servers/hadoop-2.7.5
sbin/start-yarn.sh

6.查看resourceManager状态

node03上面执行:

cd   /export/servers/hadoop-2.7.5
bin/yarn rmadmin -getServiceState rm1

node02上面执行:

cd   /export/servers/hadoop-2.7.5
bin/yarn rmadmin -getServiceState rm2

7.node03启动jobHistory

node03机器执行以下命令启动jobHistory:

cd /export/servers/hadoop-2.7.5
sbin/mr-jobhistory-daemon.sh start historyserver

此时分布式集群搭建完毕!

结束:在生产环境中,基于Apache的Hadoop不便维护,升级,管理等,所以在实际的工作中,一般不使用Appach版本,一般使用CDH版本的Hadoop,但是由于CDH给出的hadoop的安装包没有提供带C程序访问的接口,我们在使用本地库(本地库可以用来做压缩,以及支持C程序等等)的时候就会出问题。所以需要自己重新进行编译,让其支持本地库。
编译详见我的博客:CDH版本hadoop重新编译

你可能感兴趣的:(big,data)