学习莫烦 tesorflow视频,然后敲代码,改了原来有的错误,现在是可以运行的版本了。加了很多注释。
# 参考https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/5-09-RNN3/
修改的错误是:版本问题tf.train.SummaryWriter改为tf.summary.FilterWritwer;
tf.merge_all_summaries()改为tf.summary.merge_all();
错误:crossent = softmax_loss_function(labels=target, logits=logit)
TypeError: ms_error() got an unexpected keyword argument 'labels'
解决:def ms_error(self, labels, logits):
return tf.square(tf.subtract(labels,logits))
完整代码如下
# -*- coding: utf-8 -*-
"""
Created on Fri May 25 17:19:53 2018
regression RNN LSTM
tensorboard
plt.plot
RNN
LSTM
"""
#执行过程 运行本文件,再cmd -> activate tensorflow -> tensorboard --logdir=E://tensorflow-example//logs
# google -> http://AOC:6006
#分类使用[(batch_size, output_size)*steps] 中最后一个step的值;
#分类使用或者描述为(batch_size, n_step, output_size)中(batch_size, -1, output_size)
#回归问题中,尽管可能输入和输出维度是1,
#但是可以time_steps=20,即把20个点当成个序列,这时候就要考虑每一步的output,合起来就是20个输出,即一个序列。
#import packages
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
tf.reset_default_graph() ####制胜法宝
#define hypeparameter
BATCH_START = 0
TIME_STEPS = 20
BATCH_SIZE = 50
INPUT_SIZE = 1
OUTPUT_SIZE = 1
CELL_SIZE = 10
LR = 0.006
BATCH_START_TEST = 0
#fake data
def get_batch():
global BATCH_START, TIME_STEPS
# xs shape=(50batch, 20steps)
xs = np.arange(BATCH_START, BATCH_START+TIME_STEPS*BATCH_SIZE).reshape((BATCH_SIZE,TIME_STEPS))/(np.pi)
# 用seq去拟合res,使得seq和res曲线最小均方误差
seq = np.sin(xs)
res = np.cos(xs)
BATCH_START += TIME_STEPS #可能为了滚动效果,一次接着一个TIME_STEPS
# 画图时,每次取第一个batch,即长度为TIME_STEPS的序列。
plt.plot(xs[0, :], res[0, :], 'r', xs[0, :], seq[0, :],'b--')
plt.show()
# res and seq shape is (batch, step, input) input = 1
return [seq[:, :, np.newaxis], res[:, :, np.newaxis], xs] #改变维度,准备做LSTMRNN的输入
# class LSTMRNN
class LSTMRNN(object):
def __init__(self,n_steps,input_size,output_size,cell_size,batch_size):
self.n_steps = n_steps
self.input_size = input_size
self.output_size = output_size
self.cell_size = cell_size
self.batch_size = batch_size
with tf.name_scope("inputs"): # xs->seq, ys ->res
self.xs = tf.placeholder(tf.float32, [None, n_steps, input_size], name='xs')
self.ys = tf.placeholder(tf.float32, [None, n_steps, output_size], name='ys')
with tf.variable_scope("in_hidden"):
self.add_input_layer()
with tf.variable_scope("LSTM-cell"):
self.add_cell()
with tf.variable_scope("out_hidden"):
self.add_output_layer()
with tf.name_scope("cost"):
self.compute_cost()
with tf.name_scope("train"):
self.train_op = tf.train.AdamOptimizer(LR).minimize(self.cost)
def add_input_layer(self):
# (batch*n_step, in_size)
l_in_x = tf.reshape(self.xs, [-1, self.input_size], name='2_2D')
Ws_in = self._weight_variabe([self.input_size, self.cell_size])
bs_in = self._biases_variabe([self.cell_size,])
with tf.name_scope('Wx_plus_b'):
l_in_y = tf.matmul(l_in_x, Ws_in)+bs_in
self.l_in_y = tf.reshape(l_in_y, [-1, self.n_steps, self.cell_size], name='2_3D')
def add_cell(self):
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(self.cell_size, forget_bias=1.0, state_is_tuple=True)
with tf.name_scope('initial-state'):
self.cell_init_state = lstm_cell.zero_state(self.batch_size, dtype=tf.float32)
self.cell_outputs, self.cell_final_state = tf.nn.dynamic_rnn(
lstm_cell, self.l_in_y, initial_state=self.cell_init_state, time_major=False)
def add_output_layer(self):
# shape = (batch*steps, cell_size)
l_out_x = tf.reshape(self.cell_outputs, [-1, self.cell_size], name='2_2D')
Ws_out = self._weight_variabe([self.cell_size, self.output_size])
bs_out = self._biases_variabe([self.output_size,])
#shape = (batch*steps, output_size)
with tf.name_scope('Wx_plus_b'):
self.pred = tf.matmul(l_out_x, Ws_out)+bs_out
def compute_cost(self):
losses = tf.contrib.legacy_seq2seq.sequence_loss_by_example(
[tf.reshape(self.pred, [-1], name='reshape_pred')],
[tf.reshape(self.ys, [-1], name='reshape_target')],
[tf.ones([self.batch_size * self.n_steps], dtype=tf.float32)],
average_across_timesteps=True,
softmax_loss_function=self.ms_error,
name='losses'
)
with tf.name_scope('average_cost'):
self.cost = tf.div(
tf.reduce_sum(losses, name='losses_sum'),
self.batch_size,
name='average_cost')
tf.summary.scalar('cost', self.cost)
def ms_error(self, labels, logits): #参数可能是因为 tf.contrib.legacy_seq2seq.sequence_loss_by_example参数的
return tf.square(tf.subtract(labels,logits))
def _weight_variabe(sef, shape, name='weights'):
initializer = tf.random_normal_initializer(mean=0., stddev=1.,)
return tf.get_variable(shape=shape, initializer=initializer, name=name)
def _biases_variabe(sef, shape, name='biases'):
initializer = tf.constant_initializer(0.1)
return tf.get_variable(name=name, initializer=initializer, shape=shape)
if __name__ == '__main__':
model = LSTMRNN(TIME_STEPS, INPUT_SIZE, OUTPUT_SIZE, CELL_SIZE, BATCH_SIZE)
sess = tf.Session()
# tf.merge_all_summaries()
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter("logs", sess.graph)
sess.run(tf.initialize_all_variables())
plt.ion()
plt.show()
for i in range(200):
seq, res, xs = get_batch()
if i == 0:
feed_dict={model.xs:seq, model.ys:res}
else:
feed_dict={model.xs:seq, model.ys:res, model.cell_init_state:state}
_, cost, state, pred = sess.run([model.train_op, model.cost, model.cell_final_state, model.pred], feed_dict=feed_dict)
if(i % 20 == 0):
plt.plot(xs[0, :], res[0].flatten(), 'r', xs[0, :], pred.flatten()[:TIME_STEPS],'b--')
plt.ylim((-1.2, 1.2))
plt.draw()
plt.pause(0.3)
print('cost:', round(cost, 4))
result = sess.run(merged, feed_dict)
writer.add_summary(result, i)