这篇文章是我通过学习黄文坚、唐源所著的《TensorFlow实战》之后的简单总结,通过这本书使我对深度学习更加了解,现整理出一些部分分享给大家,错误之处可以在评论区指出,以便我加以改正,谢谢!
import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
确定训练集和测试集:
mnist = input_data.read_data_sets("MNIST_data/",one_hot = True)
trX,trY,teX,teY = mnist.train.images,mnist.train.labels,mnist.test.images,mnist.test.labels
trX = trX.reshape(-1,28,28,1)
teX = teX.reshape(-1,28,28,1)
X = tf.placeholder("float",[None,28,28,1])
Y = tf.placeholder("float",[None,10])
初始化权重函数:
def init_weights(shape):
return tf.Variable(tf.random_normal(shape,stddev=0.1))
w = init_weights([3,3,1,32])
w2 = init_weights([3,3,32,64])
w3 = init_weights([3,3,64,128])
w4 = init_weights([128*4*4,625])
w_o = init_weights([625,10])
定义网络结构:
def model(X,w,w2,w3,w4,w_o,p_keep_conv,p_keep_hidden):
l1a = tf.nn.relu(tf.nn.conv2d(X,w,strides = [1,1,1,1],padding = "SAME"))
l1 = tf.nn.max_pool(l1a,ksize = [1,2,2,1],strides = [1,2,2,1],padding = "SAME")
l1 = tf.nn.dropout(l1,p_keep_conv)
l2a = tf.nn.relu(tf.nn.conv2d(l1,w2,strides = [1,1,1,1],padding = "SAME"))
l2 = tf.nn.max_pool(l2a,ksize = [1,2,2,1],strides = [1,2,2,1],padding = "SAME")
l2 = tf.nn.dropout(l2,p_keep_conv)
l3a = tf.nn.relu(tf.nn.conv2d(l2,w3,strides = [1,1,1,1],padding = "SAME"))
l3 = tf.nn.max_pool(l3a,ksize = [1,2,2,1],strides = [1,2,2,1],padding = "SAME")
l3 = tf.reshape(l3,[-1,w4.get_shape().as_list()[0]])
l3 = tf.nn.dropout(l3,p_keep_conv)
l4 = tf.nn.relu(tf.matmul(l3,w4))
l4 = tf.nn.dropout(l4,p_keep_hidden)
#output layer
pyx = tf.matmul(l4,w_o)
return pyx
p_keep_conv = tf.placeholder("float")
p_keep_hidden = tf.placeholder("float")
py_x = model(X,w,w2,w3,w4,w_o,p_keep_conv,p_keep_hidden)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = py_x,labels = Y))
train_op = tf.train.RMSPropOptimizer(0.001,0.9).minimize(cost)
predict_op = tf.argmax(py_x,1)
batch_size = 128
test_size = 256
with tf.Session() as sess:
tf.global_variables_initializer().run()
for i in range(1000):
training_batch = zip(range(0,len(trX),batch_size),
range(batch_size,len(trX)+1,batch_size))
for start,end in training_batch:
sess.run(train_op,feed_dict = {X:trX[start:end],Y:trY[start:end],
p_keep_conv:0.8,p_keep_hidden:0.5})
test_indices = np.arange(len(teX))
np.random.shuffle(test_indices)
test_indices = test_indices[0:test_size]
print(i,np.mean(np.argmax(teY[test_indices],axis = 1) ==
sess.run(predict_op,feed_dict = {X:teX[test_indices],
p_keep_conv:1.0,
p_keep_hidden:1.0})))