public class LinkedList extends AbstractSequentialList
implements List, Deque, Cloneable, Serializable
LinkedList的本质是双向链表。
LinkedList继承于AbstractSequentialList,并且实现了Dequeue接口。
LinkedList包含两个重要的成员:header 和 size。
header是双向链表的表头,它是双向链表节点所对应的类Entry的实例。Entry中包含成员变量: previous, next, element。其中,previous是该节点的上一个节点,next是该节点的下一个节点,element是该节点所包含的值。
size是双向链表中节点的个数。
- for循环get()遍历
for(int i = 0; i < linkedList.size(); i++){
linkedList.get(i);
}
- Foreach循环遍历
for(Integer i : linkedList);
-通过pollFirst()或pollLast()遍历
while(linkedList.size() != 0){
linkedList.pollFirst();
}
-通过removeFirst()或removeLast()遍历
while(linkedList.size() != 0){
linkedList.removeFirst();
}
- 效率测试
测试以上几种遍历方式的效率,部分代码如下:
/**************** 遍历操作 **************/
System.out.println(“—————————————–”);
linkedList.clear();
for(int i = 0; i < 100000; i++){
linkedList.add(i);
}
// 迭代器遍历
long start = System.currentTimeMillis();
Iterator iterator = linkedList.iterator();
while(iterator.hasNext()){
iterator.next();
}
long end = System.currentTimeMillis();
System.out.println(“Iterator:” + (end - start) +” ms”);
// 顺序遍历(随机遍历)
start = System.currentTimeMillis();
for(int i = 0; i < linkedList.size(); i++){
linkedList.get(i);
}
end = System.currentTimeMillis();
System.out.println(“for:” + (end - start) +” ms”);
// 另一种for循环遍历
start = System.currentTimeMillis();
for(Integer i : linkedList);
end = System.currentTimeMillis();
System.out.println(“for2:” + (end - start) +” ms”);
// 通过pollFirst()或pollLast()来遍历LinkedList
LinkedList temp1 = new LinkedList<>();
temp1.addAll(linkedList);
start = System.currentTimeMillis();
while(temp1.size() != 0){
temp1.pollFirst();
}
end = System.currentTimeMillis();
System.out.println(“pollFirst()或pollLast():” + (end - start) +” ms”);
// 通过removeFirst()或removeLast()来遍历LinkedList
LinkedList temp2 = new LinkedList<>();
temp2.addAll(linkedList);
start = System.currentTimeMillis();
while(temp2.size() != 0){
temp2.removeFirst();
}
end = System.currentTimeMillis();
System.out.println(“removeFirst()或removeLast():” + (end - start) +” ms”);
输出:
Iterator:17 ms
for:8419 ms
for2:12 ms
pollFirst()或pollLast():12 ms
removeFirst()或removeLast():10 ms
由测试结果可以看出,遍历LinkedList时,使用removeFirst()或removeLast()效率最高,而for循环get()效率最低,应避免使用这种方式进行。应当注意的是,使用pollFirst()或pollLast()或removeFirst()或removeLast()遍历时,会删除原始数据,若只单纯的读取,应当选用第一种或第三种方式。
// Collection中定义的API
boolean add(E object)//添加一个数组对象
boolean addAll(Collection extends E> collection)//添加一个包含Collection的对象
void clear()//清空
boolean contains(Object object)//包含
boolean containsAll(Collection> collection)
boolean equals(Object object)//判等
int hashCode()
boolean isEmpty()//判空
Iterator iterator()
boolean remove(Object object)//删除
boolean removeAll(Collection> collection)
boolean retainAll(Collection> collection)
int size()
T[] toArray(T[] array)
Object[] toArray()
// AbstractCollection中定义的API
void add(int location, E object)
boolean addAll(int location, Collection extends E> collection)
E get(int location)//获取某个元素值
int indexOf(Object object)
int lastIndexOf(Object object)
ListIterator listIterator(int location)
ListIterator listIterator()
E remove(int location)
E set(int location, E object)
List subList(int start, int end)
// ArrayList新增的API
Object clone()//
void ensureCapacity(int minimumCapacity)//保证容量不小于元素个数
void trimToSize()
void removeRange(int fromIndex, int toIndex)
为了更了解LinkedList的原理,下面对LinkedList源码代码作出分析。
在阅读源码之前,我们先对LinkedList的整体实现进行大致说明:
LinkedList实际上是通过双向链表去实现的。既然是双向链表,那么它的顺序访问会非常高效,而随机访问效率比较低。
既然LinkedList是通过双向链表的,但是它也实现了List接口{也就是说,它实现了get(int location)、remove(int location)等“根据索引值来获取、删除节点的函数”}。LinkedList是如何实现List的这些接口的,如何将“双向链表和索引值联系起来的”?
实际原理非常简单,它就是通过一个计数索引值来实现的。例如,当我们调用get(int location)时,首先会比较“location”和“双向链表长度的1/2”;若前者大,则从链表头开始往后查找,直到location位置;否则,从链表末尾开始先前查找,直到location位置。
这就是“双线链表和索引值联系起来”的方法。
好了,接下来开始阅读源码(只要理解双向链表,那么LinkedList的源码很容易理解的)。
package java.util;
public class LinkedList
extends AbstractSequentialList
implements List, Deque, Cloneable, java.io.Serializable
{
// 链表的表头,表头不包含任何数据。Entry是个链表类数据结构。
private transient Entry header = new Entry(null, null, null);
// LinkedList中元素个数
private transient int size = 0;
// 默认构造函数:创建一个空的链表
public LinkedList() {
header.next = header.previous = header;
}
// 包含“集合”的构造函数:创建一个包含“集合”的LinkedList
public LinkedList(Collection extends E> c) {
this();
addAll(c);
}
// 获取LinkedList的第一个元素
public E getFirst() {
if (size==0)
throw new NoSuchElementException();
// 链表的表头header中不包含数据。
// 这里返回header所指下一个节点所包含的数据。
return header.next.element;
}
// 获取LinkedList的最后一个元素
public E getLast() {
if (size==0)
throw new NoSuchElementException();
// 由于LinkedList是双向链表;而表头header不包含数据。
// 因而,这里返回表头header的前一个节点所包含的数据。
return header.previous.element;
}
// 删除LinkedList的第一个元素
public E removeFirst() {
return remove(header.next);
}
// 删除LinkedList的最后一个元素
public E removeLast() {
return remove(header.previous);
}
// 将元素添加到LinkedList的起始位置
public void addFirst(E e) {
addBefore(e, header.next);
}
// 将元素添加到LinkedList的结束位置
public void addLast(E e) {
addBefore(e, header);
}
// 判断LinkedList是否包含元素(o)
public boolean contains(Object o) {
return indexOf(o) != -1;
}
// 返回LinkedList的大小
public int size() {
return size;
}
// 将元素(E)添加到LinkedList中
public boolean add(E e) {
// 将节点(节点数据是e)添加到表头(header)之前。
// 即,将节点添加到双向链表的末端。
addBefore(e, header);
return true;
}
// 从LinkedList中删除元素(o)
// 从链表开始查找,如存在元素(o)则删除该元素并返回true;
// 否则,返回false。
public boolean remove(Object o) {
if (o==null) {
// 若o为null的删除情况
for (Entry e = header.next; e != header; e = e.next) {
if (e.element==null) {
remove(e);
return true;
}
}
} else {
// 若o不为null的删除情况
for (Entry e = header.next; e != header; e = e.next) {
if (o.equals(e.element)) {
remove(e);
return true;
}
}
}
return false;
}
// 将“集合(c)”添加到LinkedList中。
// 实际上,是从双向链表的末尾开始,将“集合(c)”添加到双向链表中。
public boolean addAll(Collection extends E> c) {
return addAll(size, c);
}
// 从双向链表的index开始,将“集合(c)”添加到双向链表中。
public boolean addAll(int index, Collection extends E> c) {
if (index < 0 || index > size)
throw new IndexOutOfBoundsException("Index: "+index+
", Size: "+size);
Object[] a = c.toArray();
// 获取集合的长度
int numNew = a.length;
if (numNew==0)
return false;
modCount++;
// 设置“当前要插入节点的后一个节点”
Entry successor = (index==size ? header : entry(index));
// 设置“当前要插入节点的前一个节点”
Entry predecessor = successor.previous;
// 将集合(c)全部插入双向链表中
for (int i=0; i e = new Entry((E)a[i], successor, predecessor);
predecessor.next = e;
predecessor = e;
}
successor.previous = predecessor;
// 调整LinkedList的实际大小
size += numNew;
return true;
}
// 清空双向链表
public void clear() {
Entry e = header.next;
// 从表头开始,逐个向后遍历;对遍历到的节点执行一下操作:
// (01) 设置前一个节点为null
// (02) 设置当前节点的内容为null
// (03) 设置后一个节点为“新的当前节点”
while (e != header) {
Entry next = e.next;
e.next = e.previous = null;
e.element = null;
e = next;
}
header.next = header.previous = header;
// 设置大小为0
size = 0;
modCount++;
}
// 返回LinkedList指定位置的元素
public E get(int index) {
return entry(index).element;
}
// 设置index位置对应的节点的值为element
public E set(int index, E element) {
Entry e = entry(index);
E oldVal = e.element;
e.element = element;
return oldVal;
}
// 在index前添加节点,且节点的值为element
public void add(int index, E element) {
addBefore(element, (index==size ? header : entry(index)));
}
// 删除index位置的节点
public E remove(int index) {
return remove(entry(index));
}
// 获取双向链表中指定位置的节点
private Entry entry(int index) {
if (index < 0 || index >= size)
throw new IndexOutOfBoundsException("Index: "+index+
", Size: "+size);
Entry e = header;
// 获取index处的节点。
// 若index < 双向链表长度的1/2,则从前先后查找;
// 否则,从后向前查找。
if (index < (size >> 1)) {
for (int i = 0; i <= index; i++)
e = e.next;
} else {
for (int i = size; i > index; i--)
e = e.previous;
}
return e;
}
// 从前向后查找,返回“值为对象(o)的节点对应的索引”
// 不存在就返回-1
public int indexOf(Object o) {
int index = 0;
if (o==null) {
for (Entry e = header.next; e != header; e = e.next) {
if (e.element==null)
return index;
index++;
}
} else {
for (Entry e = header.next; e != header; e = e.next) {
if (o.equals(e.element))
return index;
index++;
}
}
return -1;
}
// 从后向前查找,返回“值为对象(o)的节点对应的索引”
// 不存在就返回-1
public int lastIndexOf(Object o) {
int index = size;
if (o==null) {
for (Entry e = header.previous; e != header; e = e.previous) {
index--;
if (e.element==null)
return index;
}
} else {
for (Entry e = header.previous; e != header; e = e.previous) {
index--;
if (o.equals(e.element))
return index;
}
}
return -1;
}
// 返回第一个节点
// 若LinkedList的大小为0,则返回null
public E peek() {
if (size==0)
return null;
return getFirst();
}
// 返回第一个节点
// 若LinkedList的大小为0,则抛出异常
public E element() {
return getFirst();
}
// 删除并返回第一个节点
// 若LinkedList的大小为0,则返回null
public E poll() {
if (size==0)
return null;
return removeFirst();
}
// 将e添加双向链表末尾
public boolean offer(E e) {
return add(e);
}
// 将e添加双向链表开头
public boolean offerFirst(E e) {
addFirst(e);
return true;
}
// 将e添加双向链表末尾
public boolean offerLast(E e) {
addLast(e);
return true;
}
// 返回第一个节点
// 若LinkedList的大小为0,则返回null
public E peekFirst() {
if (size==0)
return null;
return getFirst();
}
// 返回最后一个节点
// 若LinkedList的大小为0,则返回null
public E peekLast() {
if (size==0)
return null;
return getLast();
}
// 删除并返回第一个节点
// 若LinkedList的大小为0,则返回null
public E pollFirst() {
if (size==0)
return null;
return removeFirst();
}
// 删除并返回最后一个节点
// 若LinkedList的大小为0,则返回null
public E pollLast() {
if (size==0)
return null;
return removeLast();
}
// 将e插入到双向链表开头
public void push(E e) {
addFirst(e);
}
// 删除并返回第一个节点
public E pop() {
return removeFirst();
}
// 从LinkedList开始向后查找,删除第一个值为元素(o)的节点
// 从链表开始查找,如存在节点的值为元素(o)的节点,则删除该节点
public boolean removeFirstOccurrence(Object o) {
return remove(o);
}
// 从LinkedList末尾向前查找,删除第一个值为元素(o)的节点
// 从链表开始查找,如存在节点的值为元素(o)的节点,则删除该节点
public boolean removeLastOccurrence(Object o) {
if (o==null) {
for (Entry e = header.previous; e != header; e = e.previous) {
if (e.element==null) {
remove(e);
return true;
}
}
} else {
for (Entry e = header.previous; e != header; e = e.previous) {
if (o.equals(e.element)) {
remove(e);
return true;
}
}
}
return false;
}
// 返回“index到末尾的全部节点”对应的ListIterator对象(List迭代器)
public ListIterator listIterator(int index) {
return new ListItr(index);
}
// List迭代器
private class ListItr implements ListIterator {
// 上一次返回的节点
private Entry lastReturned = header;
// 下一个节点
private Entry next;
// 下一个节点对应的索引值
private int nextIndex;
// 期望的改变计数。用来实现fail-fast机制。
private int expectedModCount = modCount;
// 构造函数。
// 从index位置开始进行迭代
ListItr(int index) {
// index的有效性处理
if (index < 0 || index > size)
throw new IndexOutOfBoundsException("Index: "+index+ ", Size: "+size);
// 若 “index 小于 ‘双向链表长度的一半’”,则从第一个元素开始往后查找;
// 否则,从最后一个元素往前查找。
if (index < (size >> 1)) {
next = header.next;
for (nextIndex=0; nextIndexelse {
next = header;
for (nextIndex=size; nextIndex>index; nextIndex--)
next = next.previous;
}
}
// 是否存在下一个元素
public boolean hasNext() {
// 通过元素索引是否等于“双向链表大小”来判断是否达到最后。
return nextIndex != size;
}
// 获取下一个元素
public E next() {
checkForComodification();
if (nextIndex == size)
throw new NoSuchElementException();
lastReturned = next;
// next指向链表的下一个元素
next = next.next;
nextIndex++;
return lastReturned.element;
}
// 是否存在上一个元素
public boolean hasPrevious() {
// 通过元素索引是否等于0,来判断是否达到开头。
return nextIndex != 0;
}
// 获取上一个元素
public E previous() {
if (nextIndex == 0)
throw new NoSuchElementException();
// next指向链表的上一个元素
lastReturned = next = next.previous;
nextIndex--;
checkForComodification();
return lastReturned.element;
}
// 获取下一个元素的索引
public int nextIndex() {
return nextIndex;
}
// 获取上一个元素的索引
public int previousIndex() {
return nextIndex-1;
}
// 删除当前元素。
// 删除双向链表中的当前节点
public void remove() {
checkForComodification();
Entry lastNext = lastReturned.next;
try {
LinkedList.this.remove(lastReturned);
} catch (NoSuchElementException e) {
throw new IllegalStateException();
}
if (next==lastReturned)
next = lastNext;
else
nextIndex--;
lastReturned = header;
expectedModCount++;
}
// 设置当前节点为e
public void set(E e) {
if (lastReturned == header)
throw new IllegalStateException();
checkForComodification();
lastReturned.element = e;
}
// 将e添加到当前节点的前面
public void add(E e) {
checkForComodification();
lastReturned = header;
addBefore(e, next);
nextIndex++;
expectedModCount++;
}
// 判断 “modCount和expectedModCount是否相等”,依次来实现fail-fast机制。
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
// 双向链表的节点所对应的数据结构。
// 包含3部分:上一节点,下一节点,当前节点值。
private static class Entry {
// 当前节点所包含的值
E element;
// 下一个节点
Entry next;
// 上一个节点
Entry previous;
/**
* 链表节点的构造函数。
* 参数说明:
* element —— 节点所包含的数据
* next —— 下一个节点
* previous —— 上一个节点
*/
Entry(E element, Entry next, Entry previous) {
this.element = element;
this.next = next;
this.previous = previous;
}
}
// 将节点(节点数据是e)添加到entry节点之前。
private Entry addBefore(E e, Entry entry) {
// 新建节点newEntry,将newEntry插入到节点e之前;并且设置newEntry的数据是e
Entry newEntry = new Entry(e, entry, entry.previous);
newEntry.previous.next = newEntry;
newEntry.next.previous = newEntry;
// 修改LinkedList大小
size++;
// 修改LinkedList的修改统计数:用来实现fail-fast机制。
modCount++;
return newEntry;
}
// 将节点从链表中删除
private E remove(Entry e) {
if (e == header)
throw new NoSuchElementException();
E result = e.element;
e.previous.next = e.next;
e.next.previous = e.previous;
e.next = e.previous = null;
e.element = null;
size--;
modCount++;
return result;
}
// 反向迭代器
public Iterator descendingIterator() {
return new DescendingIterator();
}
// 反向迭代器实现类。
private class DescendingIterator implements Iterator {
final ListItr itr = new ListItr(size());
// 反向迭代器是否下一个元素。
// 实际上是判断双向链表的当前节点是否达到开头
public boolean hasNext() {
return itr.hasPrevious();
}
// 反向迭代器获取下一个元素。
// 实际上是获取双向链表的前一个节点
public E next() {
return itr.previous();
}
// 删除当前节点
public void remove() {
itr.remove();
}
}
// 返回LinkedList的Object[]数组
public Object[] toArray() {
// 新建Object[]数组
Object[] result = new Object[size];
int i = 0;
// 将链表中所有节点的数据都添加到Object[]数组中
for (Entry e = header.next; e != header; e = e.next)
result[i++] = e.element;
return result;
}
// 返回LinkedList的模板数组。所谓模板数组,即可以将T设为任意的数据类型
public T[] toArray(T[] a) {
// 若数组a的大小 < LinkedList的元素个数(意味着数组a不能容纳LinkedList中全部元素)
// 则新建一个T[]数组,T[]的大小为LinkedList大小,并将该T[]赋值给a。
if (a.length < size)
a = (T[])java.lang.reflect.Array.newInstance(
a.getClass().getComponentType(), size);
// 将链表中所有节点的数据都添加到数组a中
int i = 0;
Object[] result = a;
for (Entry e = header.next; e != header; e = e.next)
result[i++] = e.element;
if (a.length > size)
a[size] = null;
return a;
}
// 克隆函数。返回LinkedList的克隆对象。
public Object clone() {
LinkedList clone = null;
// 克隆一个LinkedList克隆对象
try {
clone = (LinkedList) super.clone();
} catch (CloneNotSupportedException e) {
throw new InternalError();
}
// 新建LinkedList表头节点
clone.header = new Entry(null, null, null);
clone.header.next = clone.header.previous = clone.header;
clone.size = 0;
clone.modCount = 0;
// 将链表中所有节点的数据都添加到克隆对象中
for (Entry e = header.next; e != header; e = e.next)
clone.add(e.element);
return clone;
}
// java.io.Serializable的写入函数
// 将LinkedList的“容量,所有的元素值”都写入到输出流中
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
// Write out any hidden serialization magic
s.defaultWriteObject();
// 写入“容量”
s.writeInt(size);
// 将链表中所有节点的数据都写入到输出流中
for (Entry e = header.next; e != header; e = e.next)
s.writeObject(e.element);
}
// java.io.Serializable的读取函数:根据写入方式反向读出
// 先将LinkedList的“容量”读出,然后将“所有的元素值”读出
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in any hidden serialization magic
s.defaultReadObject();
// 从输入流中读取“容量”
int size = s.readInt();
// 新建链表表头节点
header = new Entry(null, null, null);
header.next = header.previous = header;
// 从输入流中将“所有的元素值”并逐个添加到链表中
for (int i=0; i
总结:
1.LinkedList 实际上是通过双向链表去实现的。
它包含一个非常重要的内部类:Entry。Entry是双向链表节点所对应的数据结构,它包括的属性有:当前节点所包含的值,上一个节点,下一个节点。
2.从LinkedList的实现方式中可以发现,它不存在LinkedList容量不足的问题。
3.LinkedList的克隆函数,即是将全部元素克隆到一个新的LinkedList对象中。
4.LinkedList实现java.io.Serializable。当写入到输出流时,先写入“容量”,再依次写入“每一个节点保护的值”;当读出输入流时,先读取“容量”,再依次读取“每一个元素”。
5.由于LinkedList实现了Deque,而Deque接口定义了在双端队列两端访问元素的方法。提供插入、移除和检查元素的方法。每种方法都存在两种形式:一种形式在操作失败时抛出异常,另一种形式返回一个特殊值(null 或 false,具体取决于操作)。
总结起来如下表格:
第一个元素(头部) 最后一个元素(尾部)
抛出异常 特殊值 抛出异常 特殊值
插入 addFirst(e) offerFirst(e) addLast(e) offerLast(e)
移除 removeFirst() pollFirst() removeLast() pollLast()
检查 getFirst() peekFirst() getLast() peekLast()
6.LinkedList可以作为FIFO(先进先出)的队列,作为FIFO的队列时,下表的方法等价:
队列方法 等效方法
add(e) addLast(e)
offer(e) offerLast(e)
remove() removeFirst()
poll() pollFirst()
element() getFirst()
peek() peekFirst()
7.LinkedList可以作为LIFO(后进先出)的栈,作为LIFO的栈时,下表的方法等价:
栈方法 等效方法
push(e) addFirst(e)
pop() removeFirst()
peek() peekFirst()
8.无论如何,千万不要通过随机访问去遍历LinkedList!
import java.util.List;
2 import java.util.Iterator;
3 import java.util.LinkedList;
4 import java.util.NoSuchElementException;
5
6 /*
7 * @desc LinkedList测试程序。
8 *
9 * @author skywang
10 * @email [email protected]
11 */
12 public class LinkedListTest {
13 public static void main(String[] args) {
14 // 测试LinkedList的API
15 testLinkedListAPIs() ;
16
17 // 将LinkedList当作 LIFO(后进先出)的堆栈
18 useLinkedListAsLIFO();
19
20 // 将LinkedList当作 FIFO(先进先出)的队列
21 useLinkedListAsFIFO();
22 }
23
24 /*
25 * 测试LinkedList中部分API
26 */
27 private static void testLinkedListAPIs() {
28 String val = null;
29 //LinkedList llist;
30 //llist.offer("10");
31 // 新建一个LinkedList
32 LinkedList llist = new LinkedList();
33 //---- 添加操作 ----
34 // 依次添加1,2,3
35 llist.add("1");
36 llist.add("2");
37 llist.add("3");
38
39 // 将“4”添加到第一个位置
40 llist.add(1, "4");
41
42
43 System.out.println("\nTest \"addFirst(), removeFirst(), getFirst()\"");
44 // (01) 将“10”添加到第一个位置。 失败的话,抛出异常!
45 llist.addFirst("10");
46 System.out.println("llist:"+llist);
47 // (02) 将第一个元素删除。 失败的话,抛出异常!
48 System.out.println("llist.removeFirst():"+llist.removeFirst());
49 System.out.println("llist:"+llist);
50 // (03) 获取第一个元素。 失败的话,抛出异常!
51 System.out.println("llist.getFirst():"+llist.getFirst());
52
53
54 System.out.println("\nTest \"offerFirst(), pollFirst(), peekFirst()\"");
55 // (01) 将“10”添加到第一个位置。 返回true。
56 llist.offerFirst("10");
57 System.out.println("llist:"+llist);
58 // (02) 将第一个元素删除。 失败的话,返回null。
59 System.out.println("llist.pollFirst():"+llist.pollFirst());
60 System.out.println("llist:"+llist);
61 // (03) 获取第一个元素。 失败的话,返回null。
62 System.out.println("llist.peekFirst():"+llist.peekFirst());
63
64
65 System.out.println("\nTest \"addLast(), removeLast(), getLast()\"");
66 // (01) 将“20”添加到最后一个位置。 失败的话,抛出异常!
67 llist.addLast("20");
68 System.out.println("llist:"+llist);
69 // (02) 将最后一个元素删除。 失败的话,抛出异常!
70 System.out.println("llist.removeLast():"+llist.removeLast());
71 System.out.println("llist:"+llist);
72 // (03) 获取最后一个元素。 失败的话,抛出异常!
73 System.out.println("llist.getLast():"+llist.getLast());
74
75
76 System.out.println("\nTest \"offerLast(), pollLast(), peekLast()\"");
77 // (01) 将“20”添加到第一个位置。 返回true。
78 llist.offerLast("20");
79 System.out.println("llist:"+llist);
80 // (02) 将第一个元素删除。 失败的话,返回null。
81 System.out.println("llist.pollLast():"+llist.pollLast());
82 System.out.println("llist:"+llist);
83 // (03) 获取第一个元素。 失败的话,返回null。
84 System.out.println("llist.peekLast():"+llist.peekLast());
85
86
87
88 // 将第3个元素设置300。不建议在LinkedList中使用此操作,因为效率低!
89 llist.set(2, "300");
90 // 获取第3个元素。不建议在LinkedList中使用此操作,因为效率低!
91 System.out.println("\nget(3):"+llist.get(2));
92
93
94 // ---- toArray(T[] a) ----
95 // 将LinkedList转行为数组
96 String[] arr = (String[])llist.toArray(new String[0]);
97 for (String str:arr)
98 System.out.println("str:"+str);
99
100 // 输出大小
101 System.out.println("size:"+llist.size());
102 // 清空LinkedList
103 llist.clear();
104 // 判断LinkedList是否为空
105 System.out.println("isEmpty():"+llist.isEmpty()+"\n");
106
107 }
108
109 /**
110 * 将LinkedList当作 LIFO(后进先出)的堆栈
111 */
112 private static void useLinkedListAsLIFO() {
113 System.out.println("\nuseLinkedListAsLIFO");
114 // 新建一个LinkedList
115 LinkedList stack = new LinkedList();
116
117 // 将1,2,3,4添加到堆栈中
118 stack.push("1");
119 stack.push("2");
120 stack.push("3");
121 stack.push("4");
122 // 打印“栈”
123 System.out.println("stack:"+stack);
124
125 // 删除“栈顶元素”
126 System.out.println("stack.pop():"+stack.pop());
127
128 // 取出“栈顶元素”
129 System.out.println("stack.peek():"+stack.peek());
130
131 // 打印“栈”
132 System.out.println("stack:"+stack);
133 }
134
135 /**
136 * 将LinkedList当作 FIFO(先进先出)的队列
137 */
138 private static void useLinkedListAsFIFO() {
139 System.out.println("\nuseLinkedListAsFIFO");
140 // 新建一个LinkedList
141 LinkedList queue = new LinkedList();
142
143 // 将10,20,30,40添加到队列。每次都是插入到末尾
144 queue.add("10");
145 queue.add("20");
146 queue.add("30");
147 queue.add("40");
148 // 打印“队列”
149 System.out.println("queue:"+queue);
150
151 // 删除(队列的第一个元素)
152 System.out.println("queue.remove():"+queue.remove());
153
154 // 读取(队列的第一个元素)
155 System.out.println("queue.element():"+queue.element());
156
157 // 打印“队列”
158 System.out.println("queue:"+queue);
159 }
160 }
运行结果:
Test "addFirst(), removeFirst(), getFirst()"
llist:[10, 1, 4, 2, 3]
llist.removeFirst():10
llist:[1, 4, 2, 3]
llist.getFirst():1
Test "offerFirst(), pollFirst(), peekFirst()"
llist:[10, 1, 4, 2, 3]
llist.pollFirst():10
llist:[1, 4, 2, 3]
llist.peekFirst():1
Test "addLast(), removeLast(), getLast()"
llist:[1, 4, 2, 3, 20]
llist.removeLast():20
llist:[1, 4, 2, 3]
llist.getLast():3
Test "offerLast(), pollLast(), peekLast()"
llist:[1, 4, 2, 3, 20]
llist.pollLast():20
llist:[1, 4, 2, 3]
llist.peekLast():3
get(3):300
str:1
str:4
str:300
str:3
size:4
isEmpty():true
useLinkedListAsLIFO
stack:[4, 3, 2, 1]
stack.pop():4
stack.peek():3
stack:[3, 2, 1]
useLinkedListAsFIFO
queue:[10, 20, 30, 40]
queue.remove():10
queue.element():20
queue:[20, 30, 40]