自从AlexNet一举夺得ILSVRC 2012 ImageNet图像分类竞赛的冠军后,卷积神经网络(CNN)的热潮便席卷了整个计算机视觉领域。CNN模型火速替代了传统人工设计(hand-crafted)特征和分类器,不仅提供了一种端到端的处理方法,还大幅度地刷新了各个图像竞赛任务的精度,更甚者超越了人眼的精度(LFW人脸识别任务)。CNN模型在不断逼近计算机视觉任务的精度极限的同时,其深度和尺寸也在成倍增长。
表1 几种经典模型的尺寸,计算量和参数数量对比
Model | Model Size(MB) | Mult-Adds | Million Parameters |
---|---|---|---|
AlexNet[1] | 200 | 720 | 60 |
VGG16[2] | 500 | 15300 | 138 |
GoogleNet[3] | ~50 | 1550 | 6.8 |
Inception-v3[4] | 90-100 | 5000 | 23.2 |
随之而来的是一个很尴尬的场景:如此巨大的模型只能在有限的平台下使用,根本无法移植到移动端和嵌入式芯片当中。就算想通过网络传输,但较高的带宽占用也让很多用户望而生畏。另一方面,大尺寸的模型也对设备功耗和运行速度带来了巨大的挑战。因此这样的模型距离实用还有一段距离。
在这样的情形下,模型小型化与加速成了亟待解决的问题。其实早期就有学者提出了一系列CNN模型压缩方法,包括权值剪值(prunning)和矩阵SVD分解等,但压缩率和效率还远不能令人满意。
近年来,关于模型小型化的算法从压缩角度上可以大致分为两类:从模型权重数值角度压缩和从网络架构角度压缩。另一方面,从兼顾计算速度方面,又可以划分为:仅压缩尺寸和压缩尺寸的同时提升速度。
本文主要讨论如下几篇代表性的文章和方法,包括SqueezeNet[5]、Deep Compression[6]、XNorNet[7]、Distilling[8]、MobileNet[9]和ShuffleNet[10],也可按照上述方法进行大致分类:
表2 几种经典压缩方法及对比
Model | Compression Approach | Speed Consideration |
---|---|---|
SqueezeNet | architecture | No |
Deep Compression | weights | No |
XNorNet | weights | Yes |
Inception-v3[4] | 90-100 | 5000 |
MobileNet | architecture | Yes |
ShuffleNet | architecture | Yes |
1.1 设计思想
SqueezeNet是F. N. Iandola,S.Han等人于2016年的论文《SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5MB model size》中提出的一个小型化的网络模型结构,该网络能在保证不损失精度的同时,将原始AlexNet压缩至原来的510倍左右(< 0.5MB)。
SqueezeNet的核心指导思想是——在保证精度的同时使用最少的参数。
而这也是所有模型压缩方法的一个终极目标。
基于这个思想,SqueezeNet提出了3点网络结构设计策略:
策略 1.将3x3卷积核替换为1x1卷积核。
这一策略很好理解,因为1个1x1卷积核的参数是3x3卷积核参数的1/9,这一改动理论上可以将模型尺寸压缩9倍。
策略 2.减小输入到3x3卷积核的输入通道数。
为了保证减小网络参数,不仅仅需要减少3x3卷积核的数量,还需减少输入到3x3卷积核的输入通道数量,即式中C的数量。
策略 3.尽可能的将降采样放在网络后面的层中。
在卷积神经网络中,每层输出的特征图(feature map)是否下采样是由卷积层的步长或者池化层决定的。而一个重要的观点是:分辨率越大的特征图(延迟降采样)可以带来更高的分类精度,而这一观点从直觉上也可以很好理解,因为分辨率越大的输入能够提供的信息就越多。
上述三个策略中,前两个策略都是针对如何降低参数数量而设计的,最后一个旨在最大化网络精度。
1.2 网络架构
基于以上三个策略,作者提出了一个类似inception的网络单元结构,取名为fire module。一个fire module 包含一个squeeze 卷积层(只包含1x1卷积核)和一个expand卷积层(包含1x1和3x3卷积核)。其中,squeeze层借鉴了inception的思想,利用1x1卷积核来降低输入到expand层中3x3卷积核的输入通道数。如图1所示。
其中,定义squeeze层中1x1卷积核的数量是s1x1,类似的,expand层中1x1卷积核的数量是e1x1, 3x3卷积核的数量是e3x3。令s1x1 < e1x1+ e3x3从而保证输入到3x3的输入通道数减小。SqueezeNet的网络结构由若干个 fire module 组成,另外文章还给出了一些架构设计上的细节:
1.3 实验结果
上表显示,相比传统的压缩方法,SqueezeNet能在保证精度不损(甚至略有提升)的情况下,达到最大的压缩率,将原始AlexNet从240MB压缩至4.8MB,而结合Deep Compression后更能达到0.47MB,完全满足了移动端的部署和低带宽网络的传输。
此外,作者还借鉴ResNet思想,对原始网络结构做了修改,增加了旁路分支,将分类精度提升了约3%。
1.4 速度考量
尽管文章主要以压缩模型尺寸为目标,但毋庸置疑的一点是,SqueezeNet在网络结构中大量采用1x1和3x3卷积核是有利于速度的提升的,对于类似caffe这样的深度学习框架,在卷积层的前向计算中,采用1x1卷积核可避免额外的im2col操作,而直接利用gemm进行矩阵加速运算,因此对速度的优化是有一定的作用的。然而,这种提速的作用仍然是有限的,另外,SqueezeNet采用了9个fire module和两个卷积层,因此仍需要进行大量常规卷积操作,这也是影响速度进一步提升的瓶颈。
ShuffleNet是Face++今年提出了一篇用于移动端前向部署的网络架构。ShuffleNet基于MobileNet的group思想,将卷积操作限制到特定的输入通道。而与之不同的是,ShuffleNet将输入的group进行打散,从而保证每个卷积核的感受野能够分散到不同group的输入中,增加了模型的学习能力。
6.1 设计思想
我们知道,卷积中的group操作能够大大减少卷积操作的计算次数,而这一改动带来了速度增益和性能维持在MobileNet等文章中也得到了验证。然而group操作所带来的另一个问题是:特定的滤波器仅对特定通道的输入进行作用,这就阻碍了通道之间的信息流传递,group数量越多,可以编码的信息就越丰富,但每个group的输入通道数量减少,因此可能造成单个卷积滤波器的退化,在一定程度上削弱了网络了表达能力。
6.2 网络架构
在此篇工作中,网络架构的设计主要有以下几个创新点:
提出了一个类似于ResNet的BottleNeck单元
借鉴ResNet的旁路分支思想,ShuffleNet也引入了类似的网络单元。不同的是,在stride=2的单元中,用concat操作代替了add操作,用average pooling代替了1x1stride=2的卷积操作,有效地减少了计算量和参数。单元结构如图10所示。
提出将1x1卷积采用group操作会得到更好的分类性能
在MobileNet中提过,1x1卷积的操作占据了约95%的计算量,所以作者将1x1也更改为group卷积,使得相比MobileNet的计算量大大减少。
提出了核心的shuffle操作将不同group中的通道进行打散,从而保证不同输入通道之间的信息传递。
ShuffleNet的shuffle操作如图11所示。
图10 ShuffleNet网络单元[10]
6.3 实验结果
表8 ShuffleNet与MobileNet在ImageNet上精度对比 [10]
上表显示,相对于MobileNet,ShuffleNet的前向计算量不仅有效地得到了减少,而且分类错误率也有明显提升,验证了网络的可行性。
6.4 速度考量
在ARM平台上对网络效率进行了验证,鉴于内存读取和线程调度等因素,作者发现理论上4x的速度提升对应实际部署中约2.6x。给出了与原始AlexNet的速度对比,如下表。
表9 ShuffleNet与AlexNet在ARM平台上速度对比 [10]
结束语
近几年来,除了学术界涌现的诸多CNN模型加速工作,工业界各大公司也推出了自己的移动端前向计算框架,如Google的Tensorflow、Facebook的caffe2以及苹果今年刚推出的CoreML。相信结合不断迭代优化的网络架构和不断发展的硬件计算加速技术,未来深度学习在移动端的部署将不会是一个难题。
参考文献
[1] ImageNet Classification with Deep Convolutional Neural Networks
[2] Very Deep Convolutional Networks for Large-Scale Image Recognition
[3] Going Deeper with Convolutions
[4] Rethinking the Inception Architecture for Computer Vision
[5] SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5MB model size
[6] Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
[7] Distilling the Knowledge in a Neural Network
[8] XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks
[9] MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
[10] ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
[11] Network in Network
[12] EIE: Efficient Inference Engine on Compressed Deep Neural Network
文章转自:https://cloud.tencent.com/community/article/678192 ,本文后续会针对SqueezeNet和ShuffleNet进行详细的阐述以及应用实例。