训练好的模型,想要输入中间层的特征图,有两种方式:
1. 通过model.get_layer的方式。创建新的模型,输出为你要的层的名字。
创建模型,debug状态可以看到模型中,base_model/layers,图中红框即为layer名字,根据你想输出的层填写。最后网络feed数据后,输出的就是中间层结果。
2. 通过建立Keras的函数。
from keras import backend as K
model = load_model('data/checkpoints/inception.026-1.07.hdf5') #replaced by your model name
layer_1 = K.function([model.layers[0].input], [model.layers[1].output])#第一个 model.layers[0],不修改,表示输入数据;第二个model.layers[you wanted],修改为你需要输出的层数的编号
f1 = layer_1([input_image])[0]#只修改inpu_image
#第一层卷积后的特征图展示,输出是(1,149,149,32),(样本个数,特征图尺寸长,特征图尺寸宽,特征图个数)
for _ in range(32):
show_img = f1[:, :, :, _]
show_img.shape = [149, 149]
plt.subplot(4, 8, _ + 1)
plt.imshow(show_img, cmap='gray')
plt.axis('off')
plt.show()
特征图可视化结果:
附方法二完整代码(本例中训练好的模型和代码的百度网盘地址:链接:https://pan.baidu.com/s/1KdXNNFpsl2TggxNzOMk2dA 密码:8m70)
"""
Classify a few images through our CNN.
"""
import numpy as np
from processor import process_image
from keras.models import load_model
from keras import backend as K
import matplotlib.pyplot as plt
import cv2
def main():
model = load_model('data/checkpoints/inception.026-1.07.hdf5') #replaced by your model name
# Get all our test images.
image='v_ApplyLipstick_g01_c01-0105.jpg'
images=cv2.imread('v_ApplyLipstick_g01_c01-0105.jpg')
cv2.imshow("Image", images)
cv2.waitKey(0)
# Turn the image into an array.
image_arr = process_image(image, (299, 299, 3))# 根据载入的训练好的模型的配置,将图像统一尺寸
image_arr = np.expand_dims(image_arr, axis=0)
# 设置可视化的层
layer_1 = K.function([model.layers[0].input], [model.layers[1].output])
f1 = layer_1([image_arr])[0]
for _ in range(32):
show_img = f1[:, :, :, _]
show_img.shape = [149, 149]
plt.subplot(4, 8, _ + 1)
plt.subplot(4, 8, _ + 1)
plt.imshow(show_img, cmap='gray')
plt.axis('off')
plt.show()
# conv layer: 299
layer_1 = K.function([model.layers[0].input], [model.layers[299].output])
f1 = layer_1([image_arr])[0]
for _ in range(81):
show_img = f1[:, :, :, _]
show_img.shape = [8, 8]
plt.subplot(9, 9, _ + 1)
plt.imshow(show_img, cmap='gray')
plt.axis('off')
plt.show()
print('This is the end !')
if __name__ == '__main__':
main()