- 本地部署DeepSeek模型技术指南
Evaporator Core
apacheDoris人工智能deepseek
DeepSeek模型是一种先进的深度学习模型,广泛应用于自然语言处理、计算机视觉等领域。为了充分利用DeepSeek模型的强大功能,许多开发者和研究人员选择在本地环境中部署该模型。本文将详细介绍如何在本地环境中部署DeepSeek模型,包括环境准备、模型下载、配置、优化以及代码实现等内容。通过本文的指导,您将能够在本地成功部署并运行DeepSeek模型。1.环境准备在部署DeepSeek模型之前,
- 使用Python中的LangChain库优化消息长度:从聊天历史到模型性能的全面指南
m0_57781768
pythonlangchaineasyui
使用Python中的LangChain库优化消息长度:从聊天历史到模型性能的全面指南在现代人工智能应用中,大语言模型(LLM)扮演着越来越重要的角色,尤其是在对话系统、智能助理和其他自然语言处理任务中。然而,所有的模型都有一个有限的上下文窗口,意味着它们可以处理的输入令牌(tokens)数量是有限的。当我们需要处理较长的对话历史或复杂的任务链时,如何管理传递给模型的消息长度变得至关重要。在这篇文章
- 如何在Java中设计大规模稀疏数据处理架构
省赚客app开发者
java架构开发语言
如何在Java中设计大规模稀疏数据处理架构大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!在大数据时代,稀疏数据在各个领域变得越来越常见,例如推荐系统、自然语言处理、图像处理等。稀疏数据通常包含大量零值或空值,直接使用传统的数据处理架构可能导致效率低下,内存和计算资源浪费。因此,设计一个高效的稀疏数据处理架构成为Java开发者面临的关键挑战。本文将探讨如何在Java中
- 大语言模型(LLM)如何实现上下文的长期记忆?
引言大语言模型(LargeLanguageModels,LLMs),如GPT-4、Claude和LLaMA等,已经在自然语言处理领域展现出卓越的能力。然而,它们在实际应用中常常面临一个核心问题:如何实现上下文的长期记忆?传统LLM的上下文长度通常受限于计算资源和架构设计(如注意力机制),这限制了其处理长文档或保持复杂对话连续性的能力。本篇文章将深入探讨大语言模型的上下文记忆问题,分析其技术难点,并
- python 学习曲线函数_如何使用学习曲线来诊断你的LSTM模型的行为?(附代码)...
weixin_39576066
python学习曲线函数
LSTM是一种时间递归神经网络,适合于处理和预测时间序列中间隔和延迟相对较长的重要事件。在自然语言处理、语言识别等一系列的应用上都取得了很好的效果。《LongShortTermMemoryNetworkswithPython》是澳大利亚机器学习专家JasonBrownlee的著作,里面详细介绍了LSTM模型的原理和使用。该书总共分为十四个章节,具体如下:第一章:什么是LSTMs?第二章:怎么样训练
- transformer概述
沉墨的夜
transformer深度学习人工智能
Transformer架构的提出,不仅在自然语言处理(NLP)领域掀起了革命,也在多个深度学习任务中获得了广泛应用。自2017年由Vaswani等人提出以来,Transformer经历了多次优化和扩展,成为深度学习领域的基石。以下是Transformer架构的演进历程、作用和意义、架构详情以及未来发展趋势的详细阐述。Transformer架构的演进历程(1)Transformer的起源(2017年
- 【开源向量数据库】Milvus简介
IT古董
开源数据库milvus
Milvus是一个开源、高性能、可扩展的向量数据库,专门用于存储和检索高维向量数据。它支持近似最近邻搜索(ANN),适用于图像检索、自然语言处理(NLP)、推荐系统、异常检测等AI应用场景。官网:https://milvus.io/1.Milvus的特点(1)高性能支持数十亿级向量数据,查询速度快。使用近似最近邻(ANN)索引算法,如HNSW、IVF-FLAT、IVF-PQ、SCANN等。(2)分
- DataWorks Copilot × DeepSeek-R1 来了!给你的智能数据开发加满 buff
DataWorksCopilot×DeepSeek-R1来了!DataWorksCopilot,作为一站式智能数据开发治理平台DataWorks的智能助手,借助AI推理和自然语言处理能力,通过提供代码辅助和智能应用开发功能,为开发者和企业用户带来便捷高效的数据开发体验。现在,DataWorksCopilot与DeepSeek-R1模型深度对接,支持DeepSeek-R1-671B模型与DeepSe
- 【第15章:量子深度学习与未来趋势—15.3 量子深度学习在图像处理、自然语言处理等领域的应用潜力分析】
再见孙悟空_
#【深度学习・探索智能核心奥秘】深度学习机器学习人工智能音视频自然语言处理量子深度学习量子学习未来
一、开篇:为什么我们需要关注这场"量子+AI"的世纪联姻?各位技术爱好者们,今天我们要聊的这个话题,可能是未来十年最值得押注的技术革命——量子深度学习。这不是简单的"1+1=2"的物理叠加,而是一场可能彻底改写AI发展轨迹的范式转移。想象这样一个场景:你现在训练一个GPT-5级别的模型,不需要耗费价值上亿美元的算力资源,不需要等待数周的训练时间,甚至不需要纠结于模型参数是否过拟合。这就是量子深度学
- 语音与自然语言处理(NLP):智能交互的核心技术
给生活加糖!
热门知识自然语言处理交互人工智能
随着人工智能(AI)技术的飞速发展,语音识别与自然语言处理(NaturalLanguageProcessing,NLP)成为了智能交互系统的核心技术。它们不仅改变了人们与计算机、设备的交互方式,也推动了众多行业的革新。从智能助手(如苹果的Siri、亚马逊的Alexa)到机器翻译、自动客服系统,语音和NLP技术正逐步融入日常生活,改善我们与数字世界的沟通方式。一、什么是语音识别与自然语言处理(NLP
- 本地部署 DeepSeek:环境准备 + 详细步骤 + 高级部署方案 + 可视化工具集成 + 故障排除手册 + 性能优化建议
Katie。
人工智能技术发展aideepseek人工智能人工智能大模型
前言随着人工智能技术的迅猛发展,大语言模型(LLM)在多个行业中的应用日益广泛,从自然语言处理、内容生成到智能客服、医疗诊断等领域,AI正在深刻改变传统的工作方式和业务流程。DeepSeek作为一家新兴的AI公司,凭借其高效的AI模型和开源的优势,迅速在竞争激烈的AI市场中脱颖而出。其模型不仅在性能上表现出色,还通过开源策略吸引了大量开发者和企业的关注,形成了一个活跃的社区生态。然而,随着AI技术
- 全面解析:AI大模型入门教程,让你的学习之路不再迷茫,这个大模型学习路线非常详细收藏这篇就够了!
AGI大模型老王
人工智能学习大模型AI大模型大模型学习大模型教程大模型入门
前言AI大模型,作为当前人工智能领域的热点,凭借其强大的处理复杂数据和任务的能力,受到广泛的关注和应用。无论你是技术小白还是有一定基础的开发者,本教程都将带你从入门到实践,逐步掌握AI大模型的核心技术。基础知识大模型概述定义:AI大模型是一种拥有海量参数和强大计算能力的神经网络模型,能够处理复杂的数据和任务。应用:广泛应用于自然语言处理、图像识别、生成等领域。学习大模型的意义提升技术能力:掌握大模
- 深度剖析DeepSeek本地部署:技术、实践与优化策略
Abossss
AI论文pythonai人工智能
一、引言1.1研究背景与意义近年来,人工智能技术以迅猛之势蓬勃发展,成为推动各行业变革的核心力量。其中,大语言模型(LLMs)作为人工智能领域的关键技术,在自然语言处理、智能客服、内容创作等众多领域展现出了强大的应用潜力,引发了学术界和产业界的广泛关注。OpenAI的GPT系列模型凭借其出色的语言理解与生成能力,在全球范围内掀起了AI应用的热潮;Google的BERT模型则在自然语言理解任务中取得
- DeepSeek与ChatGPT的全面对比
测试者家园
人工智能ChatGPTDeepSeekChatGPTDeepSeek人工智能质量效能
在人工智能(AI)领域,生成式预训练模型(GPT)已成为推动技术革新的核心力量。OpenAI的ChatGPT自发布以来,凭借其卓越的自然语言处理能力,迅速占据市场主导地位。然而,近期中国AI初创公司DeepSeek推出的R1模型,以其高效性和低成本,迅速引起全球关注。本文将深入探讨DeepSeek与ChatGPT的技术差异、性能表现以及各自的应用前景,旨在为读者提供全新的视角和启发。一、技术架构与
- 《AI对话秘籍:5个Prompt Engineering核心技巧让DeepSeek输出质量翻倍》
Athena-H
PromptEngineering人工智能promptchatgptgptai
引言随着自然语言处理技术的飞速发展,像ChatGPT这样的AI对话系统已经广泛应用于客服、教育、创作等多个领域。然而,如何高效地与这些语言模型进行交互,获得准确、相关且高质量的回复,成为了应用中的一个关键挑战。这时,PromptEngineering(提示词工程)便成为了一项必不可少的技能。PromptEngineering的核心目标是通过优化与模型的输入互动方式,让模型生成更加符合预期的输出。在
- nlp技术
tqs_12345
人工智能自然语言处理
自然语言处理(NaturalLanguageProcessing,NLP)技术是一种计算机科学与人工智能的交叉领域,涉及机器对人类语言进行处理和理解的能力。以下是一些常见的NLP技术的示例:1.机器翻译:NLP技术可以帮助机器将一种语言翻译成另一种语言。例如,谷歌翻译使用NLP技术实现自动翻译,用户可以输入一段文本,然后谷歌翻译会自动将其翻译成其他语言。2.文本分类:NLP技术可以将文本分类到不同
- 《一文吃透!NLTK与SpaCy,自然语言处理的神兵利器》
人工智能深度学习
在人工智能的璀璨星空中,自然语言处理(NLP)无疑是最为耀眼的领域之一。它让机器能够理解、处理和生成人类语言,极大地推动了智能交互的发展。而在Python的NLP工具库中,NLTK和SpaCy就像两把锋利的宝剑,各自散发着独特的光芒。今天,就让我们深入探究这两款工具的使用技巧与优势,为你的NLP之旅增添强大助力。一、NLTK:自然语言处理的瑞士军刀NLTK(NaturalLanguageToolk
- 2025年大模型与Transformer架构:技术前沿与未来趋势报告
和老莫一起学AI
transformer架构深度学习人工智能产品经理学习大模型
_“欧米伽未来研究所”关注科技未来发展趋势,研究人类向欧米伽点演化过程中面临的重大机遇与挑战。将不定期推荐和发布世界范围重要科技研究进展和未来趋势研究。在人工智能的宏大版图中,Transformer架构无疑是一颗璀璨的明星。它的出现,彻底改变了自然语言处理、计算机视觉等诸多领域的发展轨迹。《2025年大模型与Transformer架构:技术前沿与未来趋势报告》深入剖析了Transformer架构的
- AI 大模型创业:如何利用市场优势?
SuperAGI2025
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
AI大模型创业:如何利用市场优势?1.背景介绍随着人工智能技术的不断发展,大模型(LargeModels)在商业化应用中日益受到关注。大模型是指在特定领域中应用广泛、参数量巨大的神经网络模型,如BERT、GPT-3、DALL-E等。这些大模型通过在大规模数据集上进行预训练,具备强大的泛化能力和适应性,能够广泛应用于自然语言处理(NLP)、计算机视觉(CV)、生成对抗网络(GAN)等多个领域。然而,
- 产品经理学习——AI产品
Li灿灿
产品经理学习人工智能
本篇文章,主要是针对目前不同类型AI公司的产品经理职责和AI产品经理的模型进行介绍。AI产品分类AI产品分为软件型和软硬件结合型,软件型的AI产品主要是具备理解、推理和决策能力的AI,如NLP(自然语言处理)系统或者创造类,创作型内容如音乐、艺术和写作等。软硬结合型AI产品一般和传统领域相关,如医疗AI、教育AI和零售AI等。有些公司是纯粹的AI公司,对应的特点是专注于做底层的算法,做芯片技术,纯
- 智能客服平台的架构设计:实现高效、安全、可靠的服务运行
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战LLM大模型落地实战指南自然语言处理人工智能语言模型编程实践开发语言架构设计
这篇文章将深入探讨智能客服平台的架构设计,以及如何实现高效、安全、可靠的服务运行。我会遵循您提供的要求和结构模板来撰写这篇文章。让我们开始吧。智能客服平台的架构设计,实现高效、安全、可靠的服务运行关键词:智能客服、架构设计、高效性、安全性、可靠性、微服务、自然语言处理、机器学习1.背景介绍在当今数字化时代,客户服务已成为企业与客户之间沟通的关键纽带。随着人工智能技术的快速发展,智能客服平台应运而生
- 深入解析LangChain:构建智能应用的全方位指南
AIGC大模型 吱屋猪
langchain语言模型人工智能自然语言处理llama百度机器学习
1.LangChain介绍与环境配置面试官:“你能先简单介绍一下LangChain吗?包括它的背景、主要功能,以及它在当前语言模型开发中的意义。”你:"LangChain是一个开源框架,旨在简化和增强基于语言模型的应用开发。随着语言模型,特别是大型预训练模型的兴起,开发者逐渐认识到这些模型不仅可以生成文本,还可以被用于处理复杂的对话、数据分析以及其他需要自然语言处理的任务。然而,这些模型的集成和实
- deepseek与gpt,核心原理对比
test猿
gpt
DeepSeek与GPT作为AI大模型,在自然语言处理等领域展现出强大的能力,它们的核心原理对比主要体现在模型架构、训练策略、资源效率以及应用场景优化等方面。一、模型架构DeepSeek混合专家(MoE)框架:DeepSeek采用了混合专家框架,其内部包含多个“专家”子模块,每个子模块专注于不同的任务或数据领域。例如,DeepSeek-R1拥有6710亿参数,但每次仅激活约370亿参数,通过动态选
- 教育小程序+AI出题:如何通过自然语言处理技术提升题目质量
万岳科技系统开发
人工智能小程序自然语言处理
随着教育科技的飞速发展,教育小程序已经成为学生与教师之间互动的重要平台之一。与此同时,人工智能(AI)和自然语言处理(NLP)技术的应用正在不断推动教育内容的智能化。特别是在AI出题系统中,如何通过NLP技术提升题目质量,成为教育领域中的一个重要课题。本文将介绍如何利用自然语言处理技术,通过AI出题系统自动生成高质量、个性化的题目,提升教育小程序的交互性与教学效果。一、自然语言处理(NLP)概述自
- 使用Python进行自然语言理解和意图识别毕业设计源码
sj52abcd
python课程设计开发语言毕业设计
博主介绍:✌专注于VUE,小程序,安卓,Java,python,物联网专业,有17年开发经验,长年从事毕业指导,项目实战✌选取一个适合的毕业设计题目很重要。✌关注✌私信我✌具体的问题,我会尽力帮助你。研究的背景:随着人工智能的发展,自然语言处理成为了人工智能领域的一个重要分支。在自然语言处理中,理解用户的意图是非常关键的一步。随着Python语言的广泛应用,Python成为了许多自然语言处理任务的
- 大模型prompt实例:知识库信息质量校验模块
写代码的中青年
大模型prompt人工智能python大模型LLM
大模型相关目录大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容从0起步,扬帆起航。大模型应用向开发路径:AI代理工作流大模型应用开发实用开源项目汇总大模型问答项目问答性能评估方法大模型数据侧总结大模型token等基本概念及参数和内存的关系大模型应用开发-华为大模型生态规划从零开始的LLaMA-Factory的指令增
- 数字人技术在短视频中的应用
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
数字人、短视频、人工智能、计算机视觉、自然语言处理、虚拟主播、内容创作1.背景介绍短视频作为一种新兴的传播媒介,其内容形式丰富、传播速度快、用户粘性强,已成为当今互联网领域最热门的应用之一。随着技术的不断发展,数字人技术逐渐成熟,并开始在短视频领域得到广泛应用。数字人是指利用计算机技术模拟真实人类形象和行为的虚拟角色,其具备逼真的外形、流畅的肢体动作和自然的语言表达能力。数字人技术在短视频领域的应
- deep seek
m0_69576880
前端ai
1.介绍:DeepSeek是一款由国内人工智能公司研发的大型语言模型,拥有强大的自然语言处理能力,能够理解并回答问题,还能辅助写代码、整理资料和解决复杂的数学问题。免费开源,媲美ChatGPT最近最火爆的AI对话程序。www.deepseek.com这是deepseek官网2.这是deepseek注册页面3.国产语言对话ai,大家有兴趣的可以去试试。不过chatgpt也进行了改变,大家也可以免费使
- RWKV Runner:让RNN-LLM模型触手可及
步子哥
rnn人工智能深度学习
在这个信息爆炸的时代,人工智能(AI)已经成为我们生活中不可或缺的一部分,尤其是大语言模型(LLM)在自然语言处理中的广泛应用。然而,尽管这些技术的潜力巨大,许多用户仍然面临着使用门槛高、配置复杂等问题。为了解决这一困境,RWKVRunner应运而生。它不仅提供了一个简便的接口,还让用户能够轻松地使用大语言模型。本文将深入探讨RWKVRunner的功能、安装步骤以及如何利用它来实现各种应用。RWK
- AI大模型(如GPT、BERT等)可以通过自然语言处理(NLP)和机器学习技术,显著提升测试效率
小赖同学啊
python人工智能自动化测试(apppcAPI)人工智能自然语言处理gpt
在软件测试中,AI大模型(如GPT、BERT等)可以通过自然语言处理(NLP)和机器学习技术,显著提升测试效率。以下是几个具体的应用场景及对应的代码实现示例:1.自动生成测试用例AI大模型可以根据需求文档或用户故事自动生成测试用例。代码示例(使用OpenAIGPTAPI):importopenai#设置OpenAIAPI密钥openai.api_key="your-openai-api-key"#
- 异常的核心类Throwable
无量
java源码异常处理exception
java异常的核心是Throwable,其他的如Error和Exception都是继承的这个类 里面有个核心参数是detailMessage,记录异常信息,getMessage核心方法,获取这个参数的值,我们可以自己定义自己的异常类,去继承这个Exception就可以了,方法基本上,用父类的构造方法就OK,所以这么看异常是不是很easy
package com.natsu;
- mongoDB 游标(cursor) 实现分页 迭代
开窍的石头
mongodb
上篇中我们讲了mongoDB 中的查询函数,现在我们讲mongo中如何做分页查询
如何声明一个游标
var mycursor = db.user.find({_id:{$lte:5}});
迭代显示游标数
- MySQL数据库INNODB 表损坏修复处理过程
0624chenhong
tomcatmysql
最近mysql数据库经常死掉,用命令net stop mysql命令也无法停掉,关闭Tomcat的时候,出现Waiting for N instance(s) to be deallocated 信息。查了下,大概就是程序没有对数据库连接释放,导致Connection泄露了。因为用的是开元集成的平台,内部程序也不可能一下子给改掉的,就验证一下咯。启动Tomcat,用户登录系统,用netstat -
- 剖析如何与设计人员沟通
不懂事的小屁孩
工作
最近做图烦死了,不停的改图,改图……。烦,倒不是因为改,而是反反复复的改,人都会死。很多需求人员不知该如何与设计人员沟通,不明白如何使设计人员知道他所要的效果,结果只能是沟通变成了扯淡,改图变成了应付。
那应该如何与设计人员沟通呢?
我认为设计人员与需求人员先天就存在语言障碍。对一个合格的设计人员来说,整天玩的都是点、线、面、配色,哪种构图看起来协调;哪种配色看起来合理心里跟明镜似的,
- qq空间刷评论工具
换个号韩国红果果
JavaScript
var a=document.getElementsByClassName('textinput');
var b=[];
for(var m=0;m<a.length;m++){
if(a[m].getAttribute('placeholder')!=null)
b.push(a[m])
}
var l
- S2SH整合之session
灵静志远
springAOPstrutssession
错误信息:
Caused by: org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'cartService': Scope 'session' is not active for the current thread; consider defining a scoped
- xmp标签
a-john
标签
今天在处理数据的显示上遇到一个问题:
var html = '<li><div class="pl-nr"><span class="user-name">' + user
+ '</span>' + text + '</div></li>';
ulComme
- Ajax的常用技巧(2)---实现Web页面中的级联菜单
aijuans
Ajax
在网络上显示数据,往往只显示数据中的一部分信息,如文章标题,产品名称等。如果浏览器要查看所有信息,只需点击相关链接即可。在web技术中,可以采用级联菜单完成上述操作。根据用户的选择,动态展开,并显示出对应选项子菜单的内容。 在传统的web实现方式中,一般是在页面初始化时动态获取到服务端数据库中对应的所有子菜单中的信息,放置到页面中对应的位置,然后再结合CSS层叠样式表动态控制对应子菜单的显示或者隐
- 天-安-门,好高
atongyeye
情感
我是85后,北漂一族,之前房租1100,因为租房合同到期,再续,房租就要涨150。最近网上新闻,地铁也要涨价。算了一下,涨价之后,每次坐地铁由原来2块变成6块。仅坐地铁费用,一个月就要涨200。内心苦痛。
晚上躺在床上一个人想了很久,很久。
我生在农
- android 动画
百合不是茶
android透明度平移缩放旋转
android的动画有两种 tween动画和Frame动画
tween动画;,透明度,缩放,旋转,平移效果
Animation 动画
AlphaAnimation 渐变透明度
RotateAnimation 画面旋转
ScaleAnimation 渐变尺寸缩放
TranslateAnimation 位置移动
Animation
- 查看本机网络信息的cmd脚本
bijian1013
cmd
@echo 您的用户名是:%USERDOMAIN%\%username%>"%userprofile%\网络参数.txt"
@echo 您的机器名是:%COMPUTERNAME%>>"%userprofile%\网络参数.txt"
@echo ___________________>>"%userprofile%\
- plsql 清除登录过的用户
征客丶
plsql
tools---preferences----logon history---history 把你想要删除的删除
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一起进步。
email : binary_spac
- 【Pig一】Pig入门
bit1129
pig
Pig安装
1.下载pig
wget http://mirror.bit.edu.cn/apache/pig/pig-0.14.0/pig-0.14.0.tar.gz
2. 解压配置环境变量
如果Pig使用Map/Reduce模式,那么需要在环境变量中,配置HADOOP_HOME环境变量
expor
- Java 线程同步几种方式
BlueSkator
volatilesynchronizedThredLocalReenTranLockConcurrent
为何要使用同步? java允许多线程并发控制,当多个线程同时操作一个可共享的资源变量时(如数据的增删改查), 将会导致数据不准确,相互之间产生冲突,因此加入同步锁以避免在该线程没有完成操作之前,被其他线程的调用, 从而保证了该变量的唯一性和准确性。 1.同步方法&
- StringUtils判断字符串是否为空的方法(转帖)
BreakingBad
nullStringUtils“”
转帖地址:http://www.cnblogs.com/shangxiaofei/p/4313111.html
public static boolean isEmpty(String str)
判断某字符串是否为空,为空的标准是 str==
null
或 str.length()==
0
- 编程之美-分层遍历二叉树
bylijinnan
java数据结构算法编程之美
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
public class LevelTraverseBinaryTree {
/**
* 编程之美 分层遍历二叉树
* 之前已经用队列实现过二叉树的层次遍历,但这次要求输出换行,因此要
- jquery取值和ajax提交复习记录
chengxuyuancsdn
jquery取值ajax提交
// 取值
// alert($("input[name='username']").val());
// alert($("input[name='password']").val());
// alert($("input[name='sex']:checked").val());
// alert($("
- 推荐国产工作流引擎嵌入式公式语法解析器-IK Expression
comsci
java应用服务器工作Excel嵌入式
这个开源软件包是国内的一位高手自行研制开发的,正如他所说的一样,我觉得它可以使一个工作流引擎上一个台阶。。。。。。欢迎大家使用,并提出意见和建议。。。
----------转帖---------------------------------------------------
IK Expression是一个开源的(OpenSource),可扩展的(Extensible),基于java语言
- 关于系统中使用多个PropertyPlaceholderConfigurer的配置及PropertyOverrideConfigurer
daizj
spring
1、PropertyPlaceholderConfigurer
Spring中PropertyPlaceholderConfigurer这个类,它是用来解析Java Properties属性文件值,并提供在spring配置期间替换使用属性值。接下来让我们逐渐的深入其配置。
基本的使用方法是:(1)
<bean id="propertyConfigurerForWZ&q
- 二叉树:二叉搜索树
dieslrae
二叉树
所谓二叉树,就是一个节点最多只能有两个子节点,而二叉搜索树就是一个经典并简单的二叉树.规则是一个节点的左子节点一定比自己小,右子节点一定大于等于自己(当然也可以反过来).在树基本平衡的时候插入,搜索和删除速度都很快,时间复杂度为O(logN).但是,如果插入的是有序的数据,那效率就会变成O(N),在这个时候,树其实变成了一个链表.
tree代码:
- C语言字符串函数大全
dcj3sjt126com
cfunction
C语言字符串函数大全
函数名: stpcpy
功 能: 拷贝一个字符串到另一个
用 法: char *stpcpy(char *destin, char *source);
程序例:
#include <stdio.h>
#include <string.h>
int main
- 友盟统计页面技巧
dcj3sjt126com
技巧
在基类调用就可以了, 基类ViewController示例代码
-(void)viewWillAppear:(BOOL)animated
{
[super viewWillAppear:animated];
[MobClick beginLogPageView:[NSString stringWithFormat:@"%@",self.class]];
- window下在同一台机器上安装多个版本jdk,修改环境变量不生效问题处理办法
flyvszhb
javajdk
window下在同一台机器上安装多个版本jdk,修改环境变量不生效问题处理办法
本机已经安装了jdk1.7,而比较早期的项目需要依赖jdk1.6,于是同时在本机安装了jdk1.6和jdk1.7.
安装jdk1.6前,执行java -version得到
C:\Users\liuxiang2>java -version
java version "1.7.0_21&quo
- Java在创建子类对象的同时会不会创建父类对象
happyqing
java创建子类对象父类对象
1.在thingking in java 的第四版第六章中明确的说了,子类对象中封装了父类对象,
2."When you create an object of the derived class, it contains within it a subobject of the base class. This subobject is the sam
- 跟我学spring3 目录贴及电子书下载
jinnianshilongnian
spring
一、《跟我学spring3》电子书下载地址:
《跟我学spring3》 (1-7 和 8-13) http://jinnianshilongnian.iteye.com/blog/pdf
跟我学spring3系列 word原版 下载
二、
源代码下载
最新依
- 第12章 Ajax(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BI and EIM 4.0 at a glance
blueoxygen
BO
http://www.sap.com/corporate-en/press.epx?PressID=14787
有机会研究下EIM家族的两个新产品~~~~
New features of the 4.0 releases of BI and EIM solutions include:
Real-time in-memory computing –
- Java线程中yield与join方法的区别
tomcat_oracle
java
长期以来,多线程问题颇为受到面试官的青睐。虽然我个人认为我们当中很少有人能真正获得机会开发复杂的多线程应用(在过去的七年中,我得到了一个机会),但是理解多线程对增加你的信心很有用。之前,我讨论了一个wait()和sleep()方法区别的问题,这一次,我将会讨论join()和yield()方法的区别。坦白的说,实际上我并没有用过其中任何一个方法,所以,如果你感觉有不恰当的地方,请提出讨论。
&nb
- android Manifest.xml选项
阿尔萨斯
Manifest
结构
继承关系
public final class Manifest extends Objectjava.lang.Objectandroid.Manifest
内部类
class Manifest.permission权限
class Manifest.permission_group权限组
构造函数
public Manifest () 详细 androi
- Oracle实现类split函数的方
zhaoshijie
oracle
关键字:Oracle实现类split函数的方
项目里需要保存结构数据,批量传到后他进行保存,为了减小数据量,子集拼装的格式,使用存储过程进行保存。保存的过程中需要对数据解析。但是oracle没有Java中split类似的函数。从网上找了一个,也补全了一下。
CREATE OR REPLACE TYPE t_split_100 IS TABLE OF VARCHAR2(100);
cr