编辑距离(Edit Distance)

概述

编辑距离(Minimum Edit Distance,MED),由俄罗斯科学家 Vladimir Levenshtein 在1965年提出,也因此而得名 Levenshtein Distance。在信息论、语言学和计算机科学领域,Levenshtein Distance 是用来度量两个序列相似程度的指标。通俗地来讲,编辑距离指的是在两个单词之间,由其中一个单词转换为另一个单词所需要的最少单字符编辑操作次数。

在这里定义的单字符编辑操作有三种:

  • 插入(Insertion)
  • 删除(Deletion)
  • 替换(Substitution)

譬如,"kitten" 和 "sitting" 这两个单词,由 "kitten" 转换为 "sitting" 需要的最少单字符编辑操作有:

1.kitten → sitten (substitution of "s" for "k")
2.sitten → sittin (substitution of "i" for "e")
3.sittin → sitting (insertion of "g" at the end)

因此,"kitten" 和 "sitting" 这两个单词之间的编辑距离为 3 。

形式化定义

我们将两个字符串 的 Levenshtein Distance 表示为 ,其中 和 分别对应 的长度。那么,在这里 可用如下的数学语言描述:

  • 指的是 中前 个字符和 中前 个字符之间的距离。为了方便理解,这里的可以看作是的长度。这里的字符串的字符 index 从 1 开始,因此最后的编辑距离便是 时的距离:

  • 当 的时候,对应着 中前 个字符和 中前 个字符,此时的 有一个值为 0 ,所以它们之间的距离为 ,即 中的最大者。

  • 当 的时候, 为如下三项的最小值:
    1. 表示 删除
    2. 表示 插入
    3. 表示 替换

  • 为一个指示函数,表示当 的时候取 1 ;当 的时候,其值为 0。

    应用与思考

    编辑距离是NLP基本的度量文本相似度的算法,可以作为文本相似任务的重要特征之一,其可应用于诸如拼写检查、论文查重、基因序列分析等多个方面。但是其缺点也很明显,算法基于文本自身的结构去计算,并没有办法获取到语义层面的信息。

    由于需要利用矩阵,故空间复杂度为O(MN)。这个在两个字符串都比较短小的情况下,能获得不错的性能。不过,如果字符串比较长的情况下,就需要极大的空间存放矩阵。例如:两个字符串都是20000字符,则 LD 矩阵的大小为:20000 * 20000 * 2=800000000 Byte=800MB。


     

你可能感兴趣的:(深度学习)