我们来参照hive的官方文档来进行Hbase与hive的整合,在这之前呢,需要将HBase与Hive之间依赖的jar包相互导入建立依赖关系,具体请参见
https://blog.csdn.net/Lu_Xiao_Yue/article/details/84949427
下面来详细介绍Hbase与Hive的整合
按照官方指导 我们先在hive中创建hive表并且关联HBase表
建表语句如下
CREATE TABLE hbase_table_1(key int, value string)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key,cf1:val")
TBLPROPERTIES ("hbase.table.name" = "xyz", "hbase.mapred.output.outputtable" = "xyz");
这里解释下 通过“hbase.column.mapping”建立映射关系,hbase_table_1是创建的hive表的表名,其中":key"是关联HBase表的rowkey, "cf1"是关联HBase表的列族,"val"是关联HBase表的列,“hbase.table.name”="xyz"是定义HBase表的表名。Hive表中的字段与HBase表中的字段一一照应。
这是就可以看到两个空表都被创建了出来
执行插入语句
INSERT OVERWRITE TABLE hbase_table_1 SELECT * FROM pokes WHERE foo=98;
这时可以看到HBase表中有了数据
hbase(main):009:0> scan "xyz"
ROW COLUMN+CELL
98 column=cf1:val, timestamp=1267737987733, value=val_98
1 row(s) in 0.0110 seconds
查询hive表
hive> select * from hbase_table_1;
Total MapReduce jobs = 1
Launching Job 1 out of 1
...
OK
98 val_98
Time taken: 4.582 seconds
以上是创建的内部表将HBase表与Hive表关联,但是表的数据不属于Hive所管理的,它的实际数据是放在Hbase表中的
创建外部表
CREATE EXTERNAL TABLE hbase_table_2(key int, value string)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES ("hbase.columns.mapping" = "cf1:val")
TBLPROPERTIES("hbase.table.name" = "some_existing_table", "hbase.mapred.output.outputtable" = "some_existing_table");
这里需要注意下,HBase是已经存在的表
创建多个列的表
CREATE TABLE hbase_table_1(key int, value1 string, value2 int, value3 int)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES (
"hbase.columns.mapping" = ":key,a:b,a:c,d:e"
);
INSERT OVERWRITE TABLE hbase_table_1 SELECT foo, bar, foo+1, foo+2
FROM pokes WHERE foo=98 OR foo=100;
查询hbase
hbase(main):014:0> describe "hbase_table_1"
DESCRIPTION ENABLED
{NAME => 'hbase_table_1', FAMILIES => [{NAME => 'a', COMPRESSION => 'N true
ONE', VERSIONS => '3', TTL => '2147483647', BLOCKSIZE => '65536', IN_M
EMORY => 'false', BLOCKCACHE => 'true'}, {NAME => 'd', COMPRESSION =>
'NONE', VERSIONS => '3', TTL => '2147483647', BLOCKSIZE => '65536', IN
_MEMORY => 'false', BLOCKCACHE => 'true'}]}
1 row(s) in 0.0170 seconds
hbase(main):015:0> scan "hbase_table_1"
ROW COLUMN+CELL
100 column=a:b, timestamp=1267740457648, value=val_100
100 column=a:c, timestamp=1267740457648, value=101
100 column=d:e, timestamp=1267740457648, value=102
98 column=a:b, timestamp=1267740457648, value=val_98
98 column=a:c, timestamp=1267740457648, value=99
98 column=d:e, timestamp=1267740457648, value=100
2 row(s) in 0.0240 seconds
查询Hive表
hive> select * from hbase_table_1;
Total MapReduce jobs = 1
Launching Job 1 out of 1
...
OK
100 val_100 101 102
98 val_98 99 100
Time taken: 4.054 seconds
创建map类型的Hive表
CREATE TABLE hbase_table_1(value map, row_key int)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES (
"hbase.columns.mapping" = "cf:,:key"
);
INSERT OVERWRITE TABLE hbase_table_1 SELECT map(bar, foo), foo FROM pokes
WHERE foo=98 OR foo=100;
查询HBase表
hbase(main):012:0> scan "hbase_table_1"
ROW COLUMN+CELL
100 column=cf:val_100, timestamp=1267739509194, value=100
98 column=cf:val_98, timestamp=1267739509194, value=98
2 row(s) in 0.0080 seconds
查询hive表
hive> select * from hbase_table_1;
Total MapReduce jobs = 1
Launching Job 1 out of 1
...
OK
{"val_100":100} 100
{"val_98":98} 98
Time taken: 3.808 seconds
Note that the key of the MAP must have datatype string, since it is used for naming the HBase column, so the following table definition will fail:
CREATE TABLE hbase_table_1(key int, value map)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES (
"hbase.columns.mapping" = ":key,cf:"
);
FAILED: Error in metadata: java.lang.RuntimeException: MetaException(message:org.apache.hadoop.hive.serde2.SerDeException org.apache.hadoop.hive.hbase.HBaseSerDe: hbase column family 'cf:' should be mapped to map but is mapped to map)
今天先分享到这里,官网上还有很多,下次继续分享~~