Hbase与hive整合

我们来参照hive的官方文档来进行Hbase与hive的整合,在这之前呢,需要将HBase与Hive之间依赖的jar包相互导入建立依赖关系,具体请参见
https://blog.csdn.net/Lu_Xiao_Yue/article/details/84949427
下面来详细介绍Hbase与Hive的整合
按照官方指导 我们先在hive中创建hive表并且关联HBase表
建表语句如下

CREATE TABLE hbase_table_1(key int, value string) 
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key,cf1:val")
TBLPROPERTIES ("hbase.table.name" = "xyz", "hbase.mapred.output.outputtable" = "xyz");

这里解释下 通过“hbase.column.mapping”建立映射关系,hbase_table_1是创建的hive表的表名,其中":key"是关联HBase表的rowkey, "cf1"是关联HBase表的列族,"val"是关联HBase表的列,“hbase.table.name”="xyz"是定义HBase表的表名。Hive表中的字段与HBase表中的字段一一照应。
Hbase与hive整合_第1张图片
Hbase与hive整合_第2张图片
Hbase与hive整合_第3张图片
这是就可以看到两个空表都被创建了出来
执行插入语句

INSERT OVERWRITE TABLE hbase_table_1 SELECT * FROM pokes WHERE foo=98;

这时可以看到HBase表中有了数据

hbase(main):009:0> scan "xyz"
ROW                          COLUMN+CELL                                                                      
 98                          column=cf1:val, timestamp=1267737987733, value=val_98                            
1 row(s) in 0.0110 seconds

查询hive表

hive> select * from hbase_table_1;
Total MapReduce jobs = 1
Launching Job 1 out of 1
...
OK
98	val_98
Time taken: 4.582 seconds

以上是创建的内部表将HBase表与Hive表关联,但是表的数据不属于Hive所管理的,它的实际数据是放在Hbase表中的

创建外部表

CREATE EXTERNAL TABLE hbase_table_2(key int, value string) 
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES ("hbase.columns.mapping" = "cf1:val")
TBLPROPERTIES("hbase.table.name" = "some_existing_table", "hbase.mapred.output.outputtable" = "some_existing_table");

这里需要注意下,HBase是已经存在的表

创建多个列的表

CREATE TABLE hbase_table_1(key int, value1 string, value2 int, value3 int) 
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES (
"hbase.columns.mapping" = ":key,a:b,a:c,d:e"
);
INSERT OVERWRITE TABLE hbase_table_1 SELECT foo, bar, foo+1, foo+2 
FROM pokes WHERE foo=98 OR foo=100;

查询hbase

hbase(main):014:0> describe "hbase_table_1"
DESCRIPTION                                                             ENABLED                               
 {NAME => 'hbase_table_1', FAMILIES => [{NAME => 'a', COMPRESSION => 'N true                                  
 ONE', VERSIONS => '3', TTL => '2147483647', BLOCKSIZE => '65536', IN_M                                       
 EMORY => 'false', BLOCKCACHE => 'true'}, {NAME => 'd', COMPRESSION =>                                        
 'NONE', VERSIONS => '3', TTL => '2147483647', BLOCKSIZE => '65536', IN                                       
 _MEMORY => 'false', BLOCKCACHE => 'true'}]}                                                                  
1 row(s) in 0.0170 seconds
hbase(main):015:0> scan "hbase_table_1"
ROW                          COLUMN+CELL                                                                      
 100                         column=a:b, timestamp=1267740457648, value=val_100                               
 100                         column=a:c, timestamp=1267740457648, value=101                                   
 100                         column=d:e, timestamp=1267740457648, value=102                                   
 98                          column=a:b, timestamp=1267740457648, value=val_98                                
 98                          column=a:c, timestamp=1267740457648, value=99                                    
 98                          column=d:e, timestamp=1267740457648, value=100                                   
2 row(s) in 0.0240 seconds

查询Hive表

hive> select * from hbase_table_1;
Total MapReduce jobs = 1
Launching Job 1 out of 1
...
OK
100	val_100	101	102
98	val_98	99	100
Time taken: 4.054 seconds

创建map类型的Hive表

CREATE TABLE hbase_table_1(value map, row_key int) 
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES (
"hbase.columns.mapping" = "cf:,:key"
);
INSERT OVERWRITE TABLE hbase_table_1 SELECT map(bar, foo), foo FROM pokes 
WHERE foo=98 OR foo=100;

查询HBase表

hbase(main):012:0> scan "hbase_table_1"
ROW                          COLUMN+CELL                                                                      
 100                         column=cf:val_100, timestamp=1267739509194, value=100                            
 98                          column=cf:val_98, timestamp=1267739509194, value=98                              
2 row(s) in 0.0080 seconds

查询hive表

hive> select * from hbase_table_1;
Total MapReduce jobs = 1
Launching Job 1 out of 1
...
OK
{"val_100":100}	100
{"val_98":98}	98
Time taken: 3.808 seconds

Note that the key of the MAP must have datatype string, since it is used for naming the HBase column, so the following table definition will fail:

CREATE TABLE hbase_table_1(key int, value map) 
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES (
"hbase.columns.mapping" = ":key,cf:"
);
FAILED: Error in metadata: java.lang.RuntimeException: MetaException(message:org.apache.hadoop.hive.serde2.SerDeException org.apache.hadoop.hive.hbase.HBaseSerDe: hbase column family 'cf:' should be mapped to map but is mapped to map)

今天先分享到这里,官网上还有很多,下次继续分享~~

你可能感兴趣的:(Hbase)