索引底层采用的是 B-Tree,折半查询,二分查找
如果不使用索引,查询时会进行全表扫描(我们应该减少全表扫描)。
使用索引,会生成索引文件,如果有 1-11 的id的数据,会先判断与6相比(6是中间数据),之后再进行二分查找…
查找 11 次 就能找到 2 的 10 次方的数据 1024 个,查找 31 次 就能找到 2 的 30 次方的数据。
数据库索引,是数据库管理系统中一个排序的数据结构,以协助快速查询、更新数据库表中数据。索引的实现通常使用 B 树及其变种 B+ 树
。
在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法。这种数据结构,就是索引。
为表设置索引要付出代价:
上图展示了一种可能的索引方式。左边是数据表,一共有两列七条记录,最左边的是数据记录的物理地址(注意逻辑上相邻的记录在磁盘上也并不是一定物理相邻的)。为了加快 Col2 的查找,可以维护一个右边所示的二叉查找树,每个节点分别包含索引键值和一个指向对应数据记录物理地址的指针,这样就可以运用二叉查找在 O(log2n)的复杂度内获取到相应数据。
创建索引可以大大提高系统的性能。
也许会有人要问:增加索引有如此多的优点,为什么不对表中的每一个列创建一个索引呢?因为,增加索引也有许多不利的方面。
索引是建立在数据库表中的某些列的上面。在创建索引的时候,应该考虑在哪些列上可以创建索引,在哪些列上不能创建索引。
一般来说,应该在这些列上创建索引:
WHERE
子句中的列上面创建索引,加快条件的判断速度。同样,对于有些列不应该创建索引。
一般来说,不应该创建索引的的这些列具有下列特点:
根据数据库的功能,可以在数据库设计器中创建三种索引:唯一索引、主键索引和聚集索引
。
唯一索引是不允许其中任何两行具有相同索引值的索引。
当现有数据中存在重复的键值时,大多数数据库不允许将新创建的唯一索引与表一起保存。数据库还可能防止添加将在表中创建重复键值的新数据。例如,如果在 employee
表中职员的姓(lname)上创建了唯一索引,则任何两个员工都不能同姓。主键索引
数据库表经常有一列或列组合,其值唯一标识表中的每一行。该列称为表的主键。在数据库关系图中为表定义主键将自动创建主键索引,主键索引是唯一索引的特定类型。该索引要求主键中的每个值都唯一。当在查询中使用主键索引时,它还允许对数据的快速访问。聚集索引
在聚集索引中,表中行的物理顺序与键值的逻辑(索引)顺序相同。一个表只能包含一个聚集索引。
如果某索引不是聚集索引,则表中行的物理顺序与键值的逻辑顺序不匹配。与非聚集索引相比,聚集索引通常提供更快的数据访问速度。
局部性原理与磁盘预读
由于存储介质的特性,磁盘本身存取就比主存慢很多,再加上机械运动耗费,磁盘的存取速度往往是主存的几百分分之一,因此为了提高效率,要尽量减少磁盘 I/O。为了达到这个目的,磁盘往往不是严格按需读取,而是每次都会预读,即使只需要一个字节,磁盘也会从这个位置开始,顺序向后读取一定长度的数据放入内存。这样做的理论依据是计算机科学中著名的局部性原理:当一个数据被用到时,其附近的数据也通常会马上被使用。程序运行期间所需要的数据通常比较集中。
由于磁盘顺序读取的效率很高(不需要寻道时间,只需很少的旋转时间),因此对于具有局部性的程序来说,预读可以提高 I/O 效率。
预读的长度一般为页(page)的整倍数。页是计算机管理存储器的逻辑块,硬件及操作系统往往将主存和磁盘存储区分割为连续的大小相等的块,每个存储块称为一页(在许多操作系统中,页得大小通常为 4k),主存和磁盘以页为单位交换数据。当程序要读取的数据不在主存中时,会触发一个缺页异常,此时系统会向磁盘发出读盘信号,磁盘会找到数据的起始位置并向后连续读取一页或几页载入内存中,然后异常返回,程序继续运行。
B-/+Tree 索引的性能分析
到这里终于可以分析 B-/+Tree 索引的性能了。
上文说过一般使用磁盘 I/O 次数评价索引结构的优劣。先从 B-Tree 分析,根据 B-Tree 的定义,可知检索一次最多需要访问 h 个节点。数据库系统的设计者巧妙利用了磁盘预读原理,将一个节点的大小设为等于一个页,这样每个节点只需要一次 I/O 就可以完全载入。为了达到这个目的,在实际实现 B-Tree 还需要使用如下技巧:
每次新建节点时,直接申请一个页的空间,这样就保证一个节点物理上也存储在一个页里,加之计算机存储分配都是按页对齐的,就实现了一个 node 只需一次 I/O。
B-Tree 中一次检索最多需要 h-1 次 I/O(根节点常驻内存),渐进复杂度为 O(h)=O(logdN)。
一般实际应用中,出度 d 是非常大的数字,通常超过 100,因此 h 非常小(通常不超过 3)。
而红黑树这种结构,h 明显要深的多。由于逻辑上很近的节点(父子)物理上可能很远,无法利用局部性,所以红黑树的 I/O 渐进复杂度也为 O(h),效率明显比 B-Tree 差很多。
综上所述,用 B-Tree 作为索引结构效率是非常高的。
应该花时间学习 B-树和 B+ 树数据结构
1)B 树
B 树中每个节点包含了键值和键值对于的数据对象存放地址指针,所以成功搜索一个对象可以不用到达树的叶节点。
成功搜索包括节点内搜索和沿某一路径的搜索,成功搜索时间取决于关键码所在的层次以及节点内关键码的数量。
在 B 树中查找给定关键字的方法是:首先把根结点取来,在根结点所包含的关键字 K1,…,kj 查找给定的关键字(可用顺序查找或二分查找法),若找到等于给定值的关键字,则查找成功;否则,一定可以确定要查的关键字在某个 Ki 或 Ki+1 之间,于是取 Pi 所指的下一层索引节点块继续查找,直到找到,或指针 Pi 为空时查找失败。
2)B+ 树
B+ 树非叶节点中存放的关键码并不指示数据对象的地址指针,非也节点只是索引部分。所有的叶节点在同一层上,包含了全部关键码和相应数据对象的存放地址指针,且叶节点按关键码从小到大顺序链接。如果实际数据对象按加入的顺序存储而不是按关键码次数存储的话,叶节点的索引必须是稠密索引,若实际数据存储按关键码次序存放的话,叶节点索引时稀疏索引。
B+ 树有 2 个头指针,一个是树的根节点,一个是最小关键码的叶节点。
所以 B+ 树有两种搜索方法:
B+ 树中,数据对象的插入和删除仅在叶节点上进行。
这两种处理索引的数据结构的不同之处: