Hadoop生态之MapReduce工作机制二(七)

一、MapReduce程序的打包运行过程:

 1> 选中待打包项目,右键选择菜单export,导出项目 

Hadoop生态之MapReduce工作机制二(七)_第1张图片

2> 点击Next进行下一步操作,选择需要打包的类,输入导出jar包的名称和路径。(可以报lib包去掉,集群上包含的有mr的依赖包)

Hadoop生态之MapReduce工作机制二(七)_第2张图片 

3> 继续点击Next,在如下画面选择执行文件的主函数类,点击Finish完成导出

Hadoop生态之MapReduce工作机制二(七)_第3张图片

4> 把导出的jar包通过wincsp等ftp工具上传到集群服务器上。

Hadoop生态之MapReduce工作机制二(七)_第4张图片

5> 通过hadoop命令在集群上执行wordcount.jar包

命令:hadoop jar wordcount.jar

6> 执行结果如下:

Hadoop生态之MapReduce工作机制二(七)_第5张图片

 

二、MR程序在Yarn环境下运行过程:

1> 案例:计算单词出现的词频(本地运行模式)

文件E:\\word.txt,内容:

郑州,开封,洛阳,南阳,信阳,驻马店,安阳,
郑州,开封,洛阳,南阳,信阳,驻马店,安阳,
郑州,开封,洛阳,南阳,信阳,驻马店,安阳,
郑州,开封,洛阳,南阳,信阳,驻马店,安阳,
郑州,开封,洛阳,南阳,信阳,驻马店,安阳,
郑州,开封,洛阳,南阳,信阳,驻马店,安阳,
周口,周口,郑州,开封,洛阳,周口,开封

2> 词频统计代码实现:

import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCountLocalToYarn {

    /**
     * mapper类
     * 
     * @author Administrator
     *
     */
    public static class WordCountMapper extends Mapper {

        @Override
        protected void map(LongWritable key, Text line, Mapper.Context context)
                throws IOException, InterruptedException {
            String[] words = line.toString().split(",");
            System.out.println(words.length);
            for (String w : words) {
                System.out.println(w);
                context.write(new Text(w), new LongWritable(1));
            }
        }
    }

    /**
     * reducer类
     * 
     * @author Administrator
     *
     */
    public static class WordCountReducer extends Reducer {

        @Override
        protected void reduce(Text text, Iterable counts,
                Reducer.Context context)
                throws IOException, InterruptedException {
            long sum = 0;
            for (LongWritable i : counts) {
                System.out.println(i);
                sum += 1;
            }
            context.write(text, new LongWritable(sum));
        }

    }

    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {

        Configuration conf = new Configuration();
        // 为什么显示设置?因为默认读取本地项目中的默认配置文件,里面是local
        // 运行在yarn上
        conf.set("mapreduce.framework.name", "yarn");
        // 告诉程序所运行的resourcemanager服务器
        conf.set("yarn.resourcemanager.hostname", "192.168.248.100");
        conf.set("fs.defaultFS", "hdfs://192.168.248.100:9000");

        // 告诉hadoop要兼容windows向Linux直接提交程序的兼容性
        conf.set("mapreduce.app-submission.cross-platform", "true");
        // 本地运行前,先手动导出包,如下,这样当直接在myEclipse环境下运行程序时,才会将这个jar自动提交到远端Yarn集群上运行,
        // 通过开启JobHistoryServer通过web界面可以看到提交上来的任务
        conf.set("mapred.jar", "E://wordcount.jar");

        Job job = Job.getInstance(conf, "word");
        job.setJarByClass(WordCountLocalToYarn.class);

        job.setMapperClass(WordCountMapper.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(LongWritable.class);

        job.setReducerClass(WordCountReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(LongWritable.class);
        FileInputFormat.setInputPaths(job, new Path("/input"));
        FileOutputFormat.setOutputPath(job, new Path("/output"));

        boolean res = job.waitForCompletion(true);
        if (res) {
            System.out.println("success");
        } else {
            System.out.println("failse");
        }

    }

}

3> 安装上述步骤进行打包生成指定位置的wordcount.jar包

4> 运行主函数,直接将jar包上传到服务器,并进行词频统计处理。

 

你可能感兴趣的:(技术总结)