一。处理结构
Tensorflow 首先要定义神经网络的结构, 然后再把数据放入结构当中去运算和 training.
(动图效果请点击这里)
因为TensorFlow是采用数据流图(data flow graphs)来计算, 所以首先我们得创建一个数据流流图, 然后再将我们的数据(数据以张量(tensor)的形式存在)放在数据流图中计算. 节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组, 即张量(tensor). 训练模型时tensor会不断的从数据流图中的一个节点flow到另一节点, 这就是TensorFlow名字的由来.
张量(Tensor):
[1]
[1, 2, 3]
[[1, 2, 3],[4, 5, 6],[7, 8, 9]]
二。例子
Tensorflow 是非常重视结构的, 我们得建立好了神经网络的结构, 才能将数字放进去, 运行这个结构.
这个例子简单的阐述了 tensorflow 当中如何用代码来运行我们搭建的结构.
首先, 我们这次需要加载 tensorflow 和 numpy 两个模块, 并且使用 numpy 来创建我们的数据.
import tensorflow as tf
import numpy as np
# create data
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data*0.1 + 0.3
接着, 我们用 tf.Variable
来创建描述 y
的参数. 我们可以把 y_data = x_data*0.1 + 0.3
想象成 y=Weights * x + biases
, 然后神经网络也就是学着把 Weights 变成 0.1, biases 变成 0.3.
Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
biases = tf.Variable(tf.zeros([1]))
y = Weights*x_data + biases
接着就是计算 y
和 y_data
的误差:
loss = tf.reduce_mean(tf.square(y-y_data))
反向传递误差的工作就教给optimizer
了, 我们使用的误差传递方法是梯度下降法: Gradient Descent
让后我们使用 optimizer
来进行参数的更新.
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
到目前为止, 我们只是建立了神经网络的结构, 还没有使用这个结构. 在使用这个结构之前, 我们必须先初始化所有之前定义的Variable
, 所以这一步是很重要的!
# init = tf.initialize_all_variables() # tf 马上就要废弃这种写法
init = tf.global_variables_initializer() # 替换成这样就好
接着,我们再创建会话 Session
. 我们会在下一节中详细讲解 Session. 我们用 Session
来执行 init
初始化步骤. 并且, 用 Session
来 run
每一次 training 的数据. 逐步提升神经网络的预测准确性.
sess = tf.Session()
sess.run(init) # Very important
for step in range(201):
sess.run(train)
if step % 20 == 0:
print(step, sess.run(Weights), sess.run(biases))
三。Session 会话控制
欢迎回来!这一次我们会讲到 Tensorflow 中的 Session
, Session
是 Tensorflow 为了控制,和输出文件的执行的语句. 运行 session.run()
可以获得你要得知的运算结果, 或者是你所要运算的部分.
首先,我们这次需要加载 Tensorflow ,然后建立两个 matrix
,输出两个 matrix
矩阵相乘的结果。
import tensorflow as tf
# create two matrixes
matrix1 = tf.constant([[3,3]])
matrix2 = tf.constant([[2],
[2]])
product = tf.matmul(matrix1,matrix2)
因为 product
不是直接计算的步骤, 所以我们会要使用 Session
来激活 product
并得到计算结果. 有两种形式使用会话控制 Session
。
# method 1
sess = tf.Session()
result = sess.run(product)
print(result)
sess.close()
# [[12]]
# method 2
with tf.Session() as sess:
result2 = sess.run(product)
print(result2)
# [[12]]
以上就是我们今天所学的两种 Session
打开模式,欢迎继续学习下一章 ———— Tensorflow 中的 Variable
。
四。Variable 变量
这节课我们学习如何在 Tensorflow 中使用 Variable
.
在 Tensorflow 中,定义了某字符串是变量,它才是变量,这一点是与 Python 所不同的。
定义语法: state = tf.Variable()
import tensorflow as tf
state = tf.Variable(0, name='counter')
# 定义常量 one
one = tf.constant(1)
# 定义加法步骤 (注: 此步并没有直接计算)
new_value = tf.add(state, one)
# 将 State 更新成 new_value
update = tf.assign(state, new_value)
如果你在 Tensorflow 中设定了变量,那么初始化变量是最重要的!!所以定义了变量以后, 一定要定义 init = tf.initialize_all_variables()
.
到这里变量还是没有被激活,需要再在 sess
里, sess.run(init)
, 激活 init
这一步.
# 如果定义 Variable, 就一定要 initialize
# init = tf.initialize_all_variables() # tf 马上就要废弃这种写法
init = tf.global_variables_initializer() # 替换成这样就好
# 使用 Session
with tf.Session() as sess:
sess.run(init)
for _ in range(3):
sess.run(update)
print(sess.run(state))
注意:直接 print(state)
不起作用!!
一定要把 sess
的指针指向 state
再进行 print
才能得到想要的结果!
以上就是我们今天所学的 Variable
打开模式,欢迎继续学习下一章 ———— Tensorflow 中的 Placeholder
。
五。Placeholder 传入值
简单运用
这一次我们会讲到 Tensorflow 中的 placeholder
, placeholder
是 Tensorflow 中的占位符,暂时储存变量.
Tensorflow 如果想要从外部传入data, 那就需要用到 tf.placeholder()
, 然后以这种形式传输数据 sess.run(***, feed_dict={input: **})
.
示例:
import tensorflow as tf
#在 Tensorflow 中需要定义 placeholder 的 type ,一般为 float32 形式
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
# mul = multiply 是将input1和input2 做乘法运算,并输出为 output
ouput = tf.multiply(input1, input2)
接下来, 传值的工作交给了 sess.run()
, 需要传入的值放在了feed_dict={}
并一一对应每一个 input
. placeholder
与 feed_dict={}
是绑定在一起出现的。
with tf.Session() as sess:
print(sess.run(ouput, feed_dict={input1: [7.], input2: [2.]}))
# [ 14.]