- ISBI 2023部分半监督学习论文汇总
xiongxyowo
划水
ISBI2023论文集:https://ieeexplore.ieee.org/xpl/conhome/10230311/proceeding[link]LeveragingInter-AnnotatorDisagreementforSemi-SupervisedSegmentation生物医学图像的信噪比通常较低,这往往导致专家们对GT分割存在分歧。现有的多重标注方法试图解决相互冲突的标注,而我
- 长尾形分布论文速览【80-119】
木木阳
Long-tailed人工智能
为便于理解和应用,以下将30篇关于长尾分布的研究文献按主题进行分类整理。每一大类包含相应的工作,帮助我们从整体上把握各方向的研究进展。1.长尾半监督学习与伪标签优化Paper90:Uncertainty-awareSamplingforLong-tailedSemi-supervisedLearning提出了一种动态阈值选择方法(UDTS),能有效改善尾部分类性能,适用于不平衡类别的半监督学习。P
- 半监督学习+迁移学习:低成本构建高精度AI模型
AI智能探索者
AIAgent智能体开发实战人工智能学习迁移学习ai
半监督学习+迁移学习:低成本构建高精度AI模型关键词:半监督学习、迁移学习、低成本、高精度AI模型、数据利用摘要:本文主要探讨了如何通过半监督学习和迁移学习相结合的方式来低成本构建高精度的AI模型。首先介绍了半监督学习和迁移学习的背景知识,然后详细解释了这两个核心概念及其相互关系,接着阐述了相关算法原理、数学模型,还给出了项目实战案例,分析了实际应用场景,推荐了相关工具和资源,最后探讨了未来发展趋
- 人工智能-基础篇-2-什么是机器学习?(ML,监督学习,半监督学习,零监督学习,强化学习,深度学习,机器学习步骤等)
weisian151
人工智能人工智能机器学习学习
1、什么是机器学习?机器学习(MachineLearning,ML)是人工智能的一个分支,是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析等数学理论。其核心目标是让计算机通过分析数据,自动学习规律并构建模型,从而对未知数据进行预测或决策,而无需依赖显式的程序指令。基本思想:通过数据驱动的方式,使系统能够从经验(数据)中改进性能,形成对数据模式的抽象化表达。基本概念:模型:模型是对现实世界现
- 机器学习算法种类繁多以下是主要算法的详细描述、使用场景、经典案例、开源框架,以及学习和应用到实际场景的建议
zhxup606
数据结构与算法.netcore
机器学习算法种类繁多,根据任务类型主要分为监督学习、无监督学习、半监督学习和强化学习四大类。以下是对主要算法的详细描述、使用场景、经典案例、开源框架,以及学习和应用到实际场景的建议。一、机器学习算法分类及详细描述1.监督学习(SupervisedLearning)监督学习使用带标签的数据(输入和输出已知)进行训练,目标是学习输入到输出的映射函数。1.1线性回归(LinearRegression)描
- AI人工智能主动学习的算法解析
AI云原生与云计算技术学院
人工智能学习算法ai
AI人工智能主动学习的算法解析关键词:主动学习、机器学习、人工智能、数据标注、查询策略、半监督学习、模型优化摘要:本文深入解析AI领域中的主动学习算法,这是一种让机器学习模型能够"主动"选择最有价值数据进行学习的智能方法。我们将从基本概念出发,通过生活化的比喻解释其工作原理,详细分析核心算法和数学模型,并提供Python实现示例。文章还将探讨主动学习的实际应用场景、工具资源以及未来发展趋势。背景介
- 解释半监督学习(Semi-Supervised Learning)的概念和方法(面试题200合集,中频、实用)
快撑死的鱼
算法工程师宝典(面试学习最新技术必备)学习机器学习人工智能
半监督学习(Semi-SupervisedLearning,SSL)是机器学习领域中一个至关重要的分支,它巧妙地结合了监督学习和无监督学习的特点,旨在利用少量标记数据和大量未标记数据来进行学习。在现实世界的许多应用场景中,获取未标记数据相对容易且成本低廉,而标记数据则往往需要昂贵的人工标注,既耗时又费力。半监督学习的出现,为解决此类问题提供了一条有效途径,能够在标记数据稀缺的情况下,显著提升模型的
- 一文读懂机器学习:分类(classification)、回归(regression)、排名(ranking)、uplifting(提升效果)和异常检测(Anomaly detection)
此星光明
机器学习分类回归数据挖掘ydf排序提升异常检测
概述机器学习是一种人工智能技术,使计算机能够通过经验自动改进性能,主要分为监督学习(使用带标签的数据进行训练)、无监督学习(寻找无标签数据中的模式)、半监督学习(结合带标签和无标签数据)和强化学习(通过与环境交互学习)。它广泛应用于金融(信用评分)、医疗(疾病预测)、自动驾驶(路径规划)和自然语言处理(机器翻译)等领域,关键概念包括特征、模型、过拟合和交叉验证。本文我们使用ydf方法进行分别介绍。
- 半监督学习与强化学习的结合:新兴的智能训练模式
字节旅行
学习人工智能
友情提示:本文内容由银河易创AI(https://ai.eaigx.com)创作平台的gpt-4o-mini模型生成,旨在提供技术参考与灵感启发。文中观点或代码示例需结合实际情况验证,建议读者通过官方文档或实践进一步确认其准确性。随着人工智能技术的迅猛发展,半监督学习(Semi-SupervisedLearning,SSL)与强化学习(ReinforcementLearning,RL)作为两种重要
- 机器学习——机器学习概述
会灭火的程序员
机器学习人工智能
机器学习——机器学习概述1什么是机器学习2为什么使用机器学习3常用术语和示例4机器学习系统的类型4.1有监督学习4.2无监督学习4.3半监督学习4.4强化学习4.5批量学习4.6在线学习(核外学习)4.7基于实例的学习4.8基于模型的学习5.机器学习的主要挑战5.1训练数据不足5.2训练数据不具代表性5.3低质量数据5.4无关特性5.5过拟合训练数据5.6欠拟合数据相关词汇:有监督学习、无监督学习
- 【计算机视觉】-CV实战项目-高分辨率遥感图像语义分割:High-Resolution-Remote-Sensing-Semantic-Segmentation
白熊188
计算机视觉计算机视觉人工智能
高分辨率遥感图像语义分割技术解析与实战指南项目背景与意义核心技术解析1.**膨胀预测(DilatedPrediction)**2.**后处理优化**3.**半监督学习:伪标签(PseudoLabeling)**4.**可视化与监控**实战指南:从数据到预测环境配置数据准备数据集推荐数据预处理模型训练模型推理与后处理常见问题与解决方案相关论文与参考总结与展望——基于PyTorch的深度学习实现项目背
- 【SAM医学分割】重新思考基础模型时代的半监督医学图像分割技术
AI_Med
SAM医学图像分割最新医学半监督分割人工智能
基于深度学习的医学图像分割通常需要大量标注数据进行训练,由于标注成本较高,因此在临床环境中的应用较少。与完全监督方法相比,半监督学习(SSL)对从专家那里获取大量注释的依赖性较低,因此成为一种颇具吸引力的策略。除了现有的以模型为中心、设计新颖正则化策略的半监督学习(SSL)进步之外,由于可提示分割基础模型的出现,该模型具有通用分割能力,可使用以任意分割模型(SAM)为代表的位置提示。在本文中,介绍
- 【机器学习】1.基本概念:监督学习 非监督学习 半监督学习
Wangziv_hahaha
算法机器学习
【机器学习】1.基本概念:监督学习非监督学习半监督学习机器学习基本概念特征与标签监督学习回归与分类非监督学习半监督学习机器学习基本概念特征与标签标签是我么要预测的事物,即线性回归中的y变量。标签可以是小麦未来的价格,图片中人脸的性别,音频的含义等一切要预测的事物。特征是是输入变量,即线性回归中的x变量。特征是预测事物的证据,而标签就是预测的结果。以周志华老师在《机器学习》中判断好瓜的问题为例——给
- 机器学习(概述)
羡江007
机器学习深度学习人工智能
1.说明有监督学习和无监督学习的各自的特点及区别-监督学习-有标签-分类:标签值离散-回归:标签值连续-无监督学习-无标签,按照样本的相似性进行聚合-半监督学习-部分有标签,部分无标签-强化学习2.说明下机器学习的建模流程-获取数据-数据基本处理-特征工程-模型训练-模型评估3.谈一下你对特征工程的理解用专业背景知识和技巧处理数据,让机器学习算法效果最好-特征提取-特征预处理-特征降维-特征选择-
- 小白入门机器学习概述
码事漫谈
AI机器学习人工智能
文章目录一、引言二、机器学习的基础概念1.机器学习的定义2.机器学习的类型(1)监督学习(SupervisedLearning)(2)无监督学习(UnsupervisedLearning)(3)半监督学习(Semi-SupervisedLearning)(4)强化学习(ReinforcementLearning)3.机器学习的基本流程三、机器学习的入门方法1.选择合适的编程语言2.学习基础数学知识
- R.E.D.算法:革新文本分类的半监督学习新范式
真智AI
算法r语言分类人工智能学习
随着大型语言模型(LLMs)在解决问题方面的应用进入新时代,只有少数问题仍然存在不尽如人意的解决方案。大多数分类问题(在概念验证层面)可以通过良好的提示工程技术和自适应的上下文学习(ICL)示例,利用LLMs以70-90%的精确度/F1分数来解决。当您希望持续实现高于此水平的性能时——当提示工程不再足够时,会发生什么?分类难题文本分类是监督学习中最古老且最易理解的示例之一。鉴于这一前提,构建能够处
- AI学习第二天--监督学习 半监督学习 无监督学习
iisugar
机器学习支持向量机人工智能
目录1.监督学习(SupervisedLearning)比喻:技术细节:形象例子:2.无监督学习(UnsupervisedLearning)比喻:技术细节:形象例子:3.半监督学习(Semi-SupervisedLearning)比喻:技术细节:形象例子:4.三者的对比与选择表格总结:5.实际案例对比案例:电商平台用户分群6.关键逻辑总结1.监督学习(SupervisedLearning)比喻:老
- 【人工智能基础2】机器学习、深度学习总结
roman_日积跬步-终至千里
人工智能习题人工智能机器学习深度学习
文章目录一、人工智能关键技术二、机器学习基础1.监督、无监督、半监督学习2.损失函数:四种损失函数3.泛化与交叉验证4.过拟合与欠拟合5.正则化6.支持向量机三、深度学习基础1、概念与原理2、学习方式3、多层神经网络训练方法一、人工智能关键技术领域基础原理与逻辑机器学习机器学习基于数据,研究从观测数据出发寻找规律,利用这些规律对未来数据进行预测。基于学习模式,机器学习可以分为监督、无监督、强化学习
- 基于PyTorch的深度学习——机器学习1
Wis4e
深度学习机器学习pytorch
监督学习是最常见的一种机器学习类型,其任务的特点就是给定学习目标,这个学习目标又称标签、标注或实际值等,整个学习过程就是围绕如何使预测与目标更接近而来的。近些年,随着深度学习的发展,分类除传统的二分类、多分类、多标签分类之外,也出现了一些新内容,如目标检测、目标识别、图像分割等监督学习的重要内容半监督学习是监督学习与无监督学习相结合的一种学习方法。半监督学习使用大量的未标记数据,同时由部分使用标记
- 机器学习入门知识
十五境剑修
机器学习人工智能
目录前言一、机器学习是什么?二、机器学习的基本类型1.监督学习2.无监督学习3.半监督学习4.强化学习三、机器学习的工作流程四、常见的机器学习算法五、机器学习的评价指标六、机器学习中的过拟合与欠拟合七、机器学习的应用八、学习机器学习的资源前言随着人工智能的发展,作为人工智能中的一个基础且重要的分支——机器学习也是愈发吸引大家来了解以及学习,那么在学习机器学习前,我们需要先来了解一下什么是机器学习,
- 机器学习课程的常见章节结构
zhangfeng1133
机器学习分类学习
以下是机器学习课程的常见章节结构,结合了搜索结果中的信息:1.机器学习基础知识机器学习的定义与分类监督学习、无监督学习、半监督学习、强化学习机器学习的产生与发展机器学习的历史与现代应用经验误差与过拟合过拟合与欠拟合的概念及解决方案评估方法与性能度量交叉验证、准确率、召回率、F1分数等偏差与方差偏差-方差权衡及其对模型的影响2.经典机器学习算法2.1线性模型一元线性回归与多元线性回归梯度下降算法(批
- 机器学习(一) 本文(3万字) | 机器学习概述 |
小酒馆燃着灯
机器学习人工智能深度学习目标检测vscodepytorchpython
推荐阅读,点击查看文章目录1.统计学习(机器学习)1.1特点1.2对象1.3目的1.4方法1.5步骤2.基本分类2.1监督学习2.1.1输入空间、特征空间和输出空间2.1.2概率分布2.1.3假设空间2.1.4问题的形式化2.2无监督学习2.3强化学习2.4半监督学习与主动学习3.基于模型分类4.基于技巧分类4.1贝叶斯学习4.2核方法5.统计学习三要素5.1模型5.2策略5.2.1损失函数与风险
- 字节跳动实习生和校招生内推
飞300
pythonjavascriptphp业界资讯算法
机器学习算法实习生-平台治理1、2026届硕士及以上学位在读,计算机等相关专业优先;2、有扎实的代码能力,熟悉深度学习/图神经网络/机器学习框架,如Pytorch、Tensorflow、DGL、Pyg、Sklearn等;3、熟悉机器学习/图学习/序列学习算法中的一项或者多项,如图建模、时序信号建模、节点/子图分类、社区挖掘、表征学习、自监督/半监督学习等,有一定深度和广度;4、熟悉相关算法在数据挖
- 机器学习模型创建的数学原理
HadesZ~
机器学习笔记机器学习算法人工智能
1模型工作原理机器学习学习模型主要分为监督学习、无监督学习、半监督学习和强化学习,本文聚焦探讨目前应用最为广泛的监督学习问题,下午如未特殊指明,机器学习特指有监督学习机器学习。众所周知,监督学习模型是通过一定数学原理,根据输入特征数据计算出预测结果的函数映射,它由自变量、函数参数和因变量组成。其中,自变量是输入模型的特征数据,模型参数分普通参数和超参数两种,因变量是模型计算出的预测结果。超参数直接
- 机器学习-期末复习题
泡椒鸡jo
期末复习机器学习python
给人脸打上标签再让模型进行学习训练的方法,属于()强化学习B.半监督学习C.监督学习D.无监督学习在机器学习中,用计算机处理一副图像,维度是:上万维B.二维C.三维D.一维以下关于降维的说法不正确的是?A.降维是将训练样本从高维空间转换到低维空间B.降维不会对数据产生损伤C.通过降维可以更有效地发掘有意义的数据结构D.降维将有助于实现数据可视化将原始数据进行集成、变换、维度规约、数值规约是在以
- 深度学习--自监督学习
Ambition_LAO
深度学习
自监督学习是一种无需大量人工标注的数据驱动方法,在生成模型中应用广泛。自监督学习通过利用数据中的固有结构或属性创建“伪标签”,使模型在没有人工标签的情况下进行学习。这种方法既提高了模型的训练效率,又降低了对标注数据的依赖。概念自监督学习:自监督学习是一种半监督学习的形式,模型通过从未标注的数据中创建自己的监督信号来进行学习。常见的方法包括通过预测数据的一部分来学习(例如,给定图像的部分,预测其余部
- 机器学习、深度学习、神经网络之间的关系
你好,工程师
AI机器学习
机器学习(MachineLearning)、深度学习(DeepLearning)和神经网络(NeuralNetworks)之间存在密切的关系,它们可以被看作是一种逐层递进的关系。下面简要介绍它们之间的关系:机器学习(MachineLearning):机器学习是一种人工智能的分支,关注如何通过数据让计算机系统从经验中学习,提高性能。机器学习算法可以分为监督学习、无监督学习、半监督学习和强化学习等不同
- 深度学习——概念引入
韶光流年都束之高阁
深度学习日记深度学习人工智能职场和发展
深度学习深度学习简介深度学习分类根据网络结构划分:循环神经网络卷积神经网络根据学习方式划分:监督学习无监督学习半监督学习根据应用领域划分:计算机视觉自然语言处理语音识别生物信息学深度学习简介深度学习(DeepLearning,DL)是机器学习领域中的一个新的研究方向,主要是通过学习样本数据的内在规律和表示层次,让机器能够具有类似于人类的分析学习能力。深度学习的最终目标是让机器能够识别和解释各种数据
- 【论文精读】SimCLR2
None-D
自监督学习机器学习人工智能deeplearning计算机视觉算法深度学习
摘要本文提出了一个半监督学习框架,包括三个步骤:无监督或自监督的预训练;有监督微调;使用未标记数据进行蒸馏。具体改进有:发现在半监督学习(无监督预训练+有监督微调)中,对于较大的模型只需采用少量有标签数据就可实现良好的结果证明了SimCLR中用于半监督学习的卷积层之后非线性变换(投影头)的重要性。更深的投影头能提高分类线性评估指标,也能提高从投影头的中间层进行微调时的半监督性能对于特定目标,过大的
- 半监督学习(主要伪标签方法)
拔牙的萌萌鼠
机器学习与深度学习学习机器学习深度学习
半监督学习1.引言应用场景:存在少量的有标签样本和大量的无标签样本的场景。在此应用场景下,通常标注数据是匮乏的,成本高的,难以获取的,与之相对应的是却存在大量的无标注数据。半监督学习的假设:决策边界应避开较高密度的区域。利用未有标记的样本来训练一个比仅使用有标记的样本可以获得的性能更好的模型1.1半监督学习方法半监督学习方法的分类:一致性规范化/一致性训练:对未标注数据进行扰动,两者的预测不存在显
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在