Python数据预处理过程:利用统计学对数据进行检验,对连续属性检验正态分布,针对正态分布属性继续使用t检验检验方差齐次性,针对非正态分布使用Mann-Whitney检验。针对分类变量进行卡方检验(涉及三种卡方的检验:Pearson卡方,校准卡方,精准卡方)等。
不懂卡方的原理可以参考:卡方检验–MBA智库
卡方检验具体的使用准则
# 四格表卡方检验用于进行两个率或两个构成比的比较。
# 要求样本含量应大于40且每个格子中的理论频数不应小于5。
# 当样本含量大于40但理论频数有小于5的情况时卡方值需要校正,当样本含量小于40时只能用确切概率法计算概率。
# (1)所有的理论数T≥5并且总样本量n≥40,用Pearson卡方进行检验。
# (2)如果理论数T<5但T≥1,并且总样本量n≥40,用连续性校正的卡方进行检验。
# (3)如果有理论数T<1或n<40,则用Fisher’s检验。
具体的代码中注释很详细:
def output_statistics_info_self(data_df, category_feats, continue_feats, target,logger,nan_value=-1,info_more=True):
'''
Function:输出最全的数据的描述信息
Parameters:
data_df:DataFrame the source data
category_feats:list
continue_feats:list
target:the classification target,as the y
nan_value:default -1,represent the nan value need to be filled
info_more:default True,output the whole info;False:output the part info for client and paper
Return:
DataFrame
'''
sample_size = data_df.shape[0]
# 判断target是二分类还是多分类(三分类及其以上)
target_values=list(data_df[target].value_counts().index)
logger.info('%s取值%s'%(target,target_values))
task_type=len(target_values)
total_describe_list=[]
# 警告:做单因素分析之前必须要异常值检查,排出非数字的异常值,否则报错
# data_df[continue_feats]=data_df[continue_feats].applymap(float)
# data_df[category_feats]=data_df[category_feats].applymap(float)
# 针对二分类任务
if task_type==2:
# 针对连续属性
# 先检验连续属性是否是正态分布其次再检验是否方差齐次,才能使用独立t检验
for col in continue_feats:
logger.info('------%s--------'%col)
col_series=data_df[data_df[col]!=nan_value][col]
col_count=col_series.count()
vals=[col,'连续',col_count]
# 检验连续属性是否符合正态分布
p_value=norm_distribution_test(sample_size,col_series)
# 如果p_value>0.05 正态分布,使用独立t检验,检验连续属性在两组样本方差相同的情况下它们的均值是否相同
condition0=(data_df[target] == target_values[0]) & (data_df[col] != nan_value)
condition1=(data_df[target] == target_values[1]) & (data_df[col] != nan_value)
if p_value > 0.05:
logger.info('%s符合正态分布'%col)
# 使用levene检验方差齐次
stat,pval=levene(data_df[condition0][col].values,data_df[condition1][col].values)
if pval>0.05:
# p值大于0.05,认为两总体具有方差齐性。
t_stat, pvalue = ttest_ind(data_df[condition0][col].values,data_df[condition1][col].values,
equal_var=True)
else:
# 两总体方差不齐
t_stat, pvalue = ttest_ind(data_df[condition0][col].values,data_df[condition1][col].values,
equal_var=False)
pvalue=round(pvalue,3)
if pvalue==0:
pvalue='<0.001'
vals.extend(['是_%s'%p_value,'ttest',t_stat,pvalue,''])
#非正态分布的二分类使用Mann-Whitney U test检验
else:
logger.info('%s不符合正态分布'%col)
m_stat, pvalue = mannwhitneyu(
data_df[condition0][col].values,data_df[condition1][col].values,
use_continuity=False,alternative='two-sided'
)
pvalue=round(pvalue,3)
if pvalue==0:
pvalue='<0.001'
vals.extend(['否_%s'%p_value,'Mann',m_stat,pvalue,''])
# 对连续变量输出均值±标准差
# 并在括号中附上IQR值(75%分位点-25%分位点的值),查看连续属性中间部分是否集中或者分散
target0_col_iqr=round(iqr(x=data_df[condition0][col].values,nan_policy='omit'),3)
target_0_mean_std="%.2f±%.2f (%s)" %(data_df[condition0][col].mean(),
data_df[condition0][col].std(),target0_col_iqr)
target1_col_iqr=round(iqr(x=data_df[condition1][col].values,nan_policy='omit'),3)
target_1_mean_std="%.2f±%.2f (%s)" %(data_df[condition1][col].mean(),
data_df[condition1][col].std(),target1_col_iqr)
vals.extend([target_0_mean_std,target_1_mean_std])
total_describe_list.append(vals)
# 针对分类变量使用"卡方检验"
for col in category_feats:
logger.info('#######%s######'%col)
col_series=data_df[data_df[col]!=nan_value][col]
col_count=col_series.count()
col_count_ser=col_series.value_counts()
vals=[col,'分类',col_count,'','卡方']
data_kf = data_df[data_df[col]!=nan_value][[col,target]]
cross_table = data_kf.groupby([col, target])[target].count().unstack()
cross_table.fillna(0,inplace=True)
logger.info(cross_table)
if len(col_count_ser)==2:
stat,pvalue=foursquare_chi_test(cross_table,col_count)
vals.extend([stat,pvalue,''])
else:
stat,pvalue,iswarning=not_foursquare_chi_test(cross_table)
vals.extend([stat,pvalue,iswarning])
vals.extend(['',''])
total_describe_list.append(vals)
# 针对分类变量输出各个类别的target比例
for col_kind in col_count_ser.index:
logger.info('col_kind:%s'%col_kind)
col_kind_percent=['%s_%s'%(col,col_kind),'','','','','','','']
for v in target_values:
col_kind_percent.append("%d(%.1f%%)" %
(data_df[((data_df[col] == col_kind) & (data_df[target] == v))].shape[0],
data_df[((data_df[col] == col_kind) & (data_df[target] == v))].shape[0] /
data_df[((data_df[col]!=nan_value)&(data_df[target] == v))].shape[0]*100))
total_describe_list.append(col_kind_percent)
# 针对三分类或者多分类
elif task_type>=3:
# "先判断是否方差齐次,才能使用独立t检验"
for col in continue_feats:
logger.info('----!!!--%s--------'%col)
col_series=data_df[data_df[col]!=nan_value][col]
col_count=col_series.count()
vals=[col,'连续',col_count]
p_value=norm_distribution_test(sample_size,col_series)
if p_value > 0.05:#正态分布
# 1-way ANOVA:原假设:两个或多个group拥有相同的均值
# 使用的前提条件:1、样本独立,2、每个样本都来源于正态分布群体,3、每个group方差齐次(方差相同)
# 以上条件不满足时:使用Kruskal-Wallis H-test
df = data_df[[col, target]]
# 排出填补的那些值
df = df[df[col] != nan_value]
stat, pvalue = f_oneway(
df[df[target] == target_values[0]][col].values,
df[df[target] == target_values[1]][col].values,
df[df[target] == target_values[2]][col].values
)
pvalue=round(pvalue,3)
if pvalue==0:
pvalue='<0.001'
vals.extend(['是_%s'%p_value,'anova',round(stat,3),pvalue])
else:
# 非正态分布
# Compute the Kruskal-Wallis H-test for independent samples
df = data_df[[col, target]]
df = data_df[data_df[col] != nan_value]
stat, pvalue = kruskalwallis(df[df[target] == target_values[0]][col].values,
df[df[target] == target_values[1]][col].values,
df[df[target] == target_values[2]][col].values)
pvalue=round(pvalue,3)
if pvalue==0:
pvalue='<0.001'
vals.extend(['否_%s'%p_value,'kruskal',round(stat,3),pvalue])
# 对连续变量输出均值±标准差,以及IQR值
condition0=(data_df[target] == target_values[0]) & (data_df[col] != nan_value)
target0_col_iqr=round(iqr(x=data_df[condition0][col].values,nan_policy='omit'),3)
target_0_mean_std="%.2f±%.2f (%s)" %(data_df[condition0][col].mean(),
data_df[condition0][col].std(),target0_col_iqr)
condition1=(data_df[target] == target_values[1]) & (data_df[col] != nan_value)
target1_col_iqr=round(iqr(x=data_df[condition1][col].values,nan_policy='omit'),3)
target_1_mean_std="%.2f±%.2f (%s)" %(data_df[condition1][col].mean(),
data_df[condition1][col].std(),target1_col_iqr)
condition2=(data_df[target] == target_values[2]) & (data_df[col] != nan_value)
target2_col_iqr=round( iqr(x=data_df[condition2][col].values,nan_policy='omit'),3)
target_2_mean_std="%.2f±%.2f (%s)" %(data_df[condition2][col].mean(),
data_df[condition2][col].std(),target2_col_iqr)
vals.extend([target_0_mean_std,target_1_mean_std,target_2_mean_std])
total_describe_list.append(vals)
for col in category_feats:
logger.info('#######%s######'%col)
col_series=data_df[data_df[col]!=nan_value][col]
col_count=col_series.count()
vals=[col,'分类',col_count,'','卡方']
data_kf = data_df[data_df[col] != nan_value][[col, target]]
cross_table = data_kf.groupby([col, target])[target].count().unstack()
cross_table.fillna(0,inplace=True)
logger.info(cross_table)
stat,pvalue,iswarning=not_foursquare_chi_test(cross_table)
vals.extend([stat,pvalue,iswarning])
vals.extend(['','',''])
total_describe_list.append(vals)
# 对类别属性输出各类别的比例
for col_kind in col_series.index:
logger.info('col_kind:%s'%col_kind)
if col_kind!=nan_value:
col_kind_percent=['%s_%s'%(col,col_kind),'','','','','','']
for v in target_values:
col_kind_percent.append("%d(%.2f)" %
(data_df[((data_df[col] == col_kind) & (data_df[target] == v))].shape[0],
data_df[((data_df[col] == col_kind) & (data_df[target] == v))].shape[0] /
data_df[data_df[col] == col_kind].shape[0]))
total_describe_list.append(col_kind_percent)
columns = ['属性','属性类别','有效值','是否正态分布', '检验方法', '统计量', 'pvalue','卡方warning']
for v in target_values:
columns.append("target_{0}".format(v))
total_describe_df = pd.DataFrame(total_describe_list, columns=columns)
# 输出额外的更多详细信息
if info_more==True:
# 新增缺失情况统计,缺失情况、最小值、最大值、均值、标准差
info_add_list=[]
for col in continue_feats+category_feats:
col_series=data_df[data_df[col]!=nan_value][col]
miss_count=data_df[data_df[col]==nan_value][col].count()
if miss_count==0:
_miss=''
else:
miss_ratio=round(miss_count/sample_size*100,2)
_miss='%s(%.1f%%)'%(miss_count,miss_ratio)
vals_info=[col,_miss]
if col in continue_feats:
vals_info.extend([
round(col_series.min(), 2),round(col_series.max(), 2),
round(col_series.mean(), 2),round(col_series.std(), 2),
round(iqr(x=col_series.values,nan_policy='omit'),2)
]
)
elif col in category_feats:
vals_info.extend(['','','','',''])
info_add_list.append(vals_info)
add_columns=['属性','缺失情况','最小值','最大值','均值','标准差','IQR']
info_add_df= pd.DataFrame(info_add_list, columns=add_columns)
total_describe_df=total_describe_df.merge(info_add_df,on='属性',how='outer')
return total_describe_df
def norm_distribution_test(sample_size,_series):
# 连续属性是否符合正态分布
# 样本大于5000:Kolmogorov-Smirnov test
# 样本小于5000:shapiro-wilk
if sample_size > 5000:
ks_stat, p_value = kstest(_series ,'norm')
else:
s_stat, p_value = shapiro(_series)
p_value=round(p_value,3)
return p_value
def foursquare_chi_test(cross_table,col_count):
# 四格表卡方检验用于进行两个率或两个构成比的比较。
# 要求样本含量应大于40且每个格子中的理论频数不应小于5。
# 当样本含量大于40但理论频数有小于5的情况时卡方值需要校正,当样本含量小于40时只能用确切概率法计算概率。
# (1)所有的理论数T≥5并且总样本量n≥40,用Pearson卡方进行检验。
# (2)如果理论数T<5但T≥1,并且总样本量n≥40,用连续性校正的卡方进行检验。
# (3)如果有理论数T<1或n<40,则用Fisher’s检验。
stat, pvalue, dof, expected = chi2_contingency(cross_table,correction=False)
if col_count>=40 and expected.min()>=5:
# Pearson卡方进行检验
stat, pvalue, dof, expected = chi2_contingency(cross_table,correction=False)
elif col_count>=40 and expected.min()<5 and expected.min()>=1:
# 连续性校正的卡方进行检验
stat, pvalue, dof, expected = chi2_contingency(cross_table,correction=True)
else:
# 用Fisher’s检验
stat,pvalue=fisher_exact(cross_table)
stat=round(stat,3)
pvalue=round(pvalue,3)
if pvalue==0:
pvalue='<0.001'
return stat,pvalue
def not_foursquare_chi_test(cross_table):
# 针对非四方表格的卡方检验
# (1)如果rxc表格中最小的理论数<1,报警告
# (2)如果rxc表格中最小的理论数<5的个数占比超过>1/5,报警告
# (3)其他情况下,使用Pearson检验
iswarning=''
stat, pvalue, dof, expected = chi2_contingency(cross_table,correction=False)
if expected.min()<1 or len([v for v in expected.reshape(1,-1)[0] if v<5])/\
(expected.shape[0]*expected.shape[1])>0.2:
iswarning='warning'
stat=round(stat,3)
pvalue=round(pvalue,3)
if pvalue==0:
pvalue='<0.001'
return stat,pvalue,iswarning
https://wiki.mbalib.com/wiki/卡方检验