本文主要介绍如何实现彩色图像的直方图均衡化,达到图像增强效果的三种方法:
1. 对RGB三个通道图像分别进行直方图均衡化,然后再合并三个通道;
2. 提取RGB三个通道图像,计算其平均直方图结果,然后再进行均衡化;
3. RGB空间转为HSI空间图像,对I(亮度,Intensity)通道进行直方图均衡化,再转为RGB图像。
第一种方法不推荐,会破坏色彩结构;根据情况选择第2,3种方法。
首先必须了解灰度直方图是什么东西。直方图就是统计一个图像各灰度级值0~255有多少各像素点。
在实现之前先了解单通道图像(灰度图)直方图均衡化和其过程。
上述过程就是求出一个原像素点到均衡化的像素点的一个映射函数 f(x)。利用该映射函数就可以循环扫描图像的每一个像素x,然后得到f(x)替代原来的像素值x,达到均衡化的结果。
在实际均衡化过程中,核心步骤如下:
1. 传入单通道图像和该的灰度直方图。
2. 遍历灰度直方图,对值 I 从 0~255 累计求和,对累计求和,对和结果除以图像的素数,然后乘以 L-1得到函数结果 得到函数结果 f(xi )。
3. 将每一个灰度值 i累积求和的结果 累积求和的结果 f(xi )存储在一个大小为 256 的 int 数组中,存储的位置为 i;
4. 遍历输入图像每一个素,记点值为 x,修改其像素值使等于 f(x)。
5. 均衡化结束。
主要步骤如下,EqualizedResult就是均衡化的映射函数,下一步骤就是将像素点值作为映射函数的输入,将输出结果替代原来的像素值。
// 功能:对灰度直方图进行均衡化
// 输入:单通道CImg对象, 灰度图对象
// 输出:均衡化结果
CImg HistogramEqualization::HistogramEqualizationMethod
(CImg InputImage,CImg Histogram)
{
int L = 256; //灰度级
int NumOfPixels = (InputImage)._width * (InputImage)._height;
double CumulativeDistributionFunction[256] = { 0 }; // 灰度直方图的累积分布
double EqualizedResult[256] = { 0 }; // 均衡化结果映射函数
/*直方图就对应于概率密度函数pdf,
而概率分布函数cdf就是直方图的累积和,
即概率密度函数的积分
积分*(L(=255)-1)*/
/*均衡化关键步骤*/
int count = 0;
cimg_forX(Histogram, x) {
count += Histogram[x]; // 累计求和
CumulativeDistributionFunction[x] = 1.0 * count / NumOfPixels; //计算概率
EqualizedResult[x] = round(CumulativeDistributionFunction[x] * (L - 1)); // 计算概率密度,round四舍五入
}
/*输出均衡化结果*/
CImg OutputImage((InputImage)._width, (InputImage)._height, 1, 1, 0);
cimg_forXY(OutputImage, x, y) // calculate histogram equalization result
OutputImage(x, y, 0) = EqualizedResult[(InputImage)(x, y)];
return OutputImage;
}
/*功能: 分别对彩色图的三个通道分开求解均衡化结果,然后合并*/
/*输入: 均衡化图像文件名*/
/*输出: 彩色图均衡化结果*/
CImg HistogramEqualization::Hist_Equal_ColorImage_OneColorChannel(string ImageFileName)
{
CImg ColorImage;
ColorImage.load_bmp(ImageFileName.c_str());
CImg R_Channel = HistogramEqualizationMethod(ColorImage.get_channel(0),
GetHistogram(ColorImage.get_channel(0)));
CImg G_Channel = HistogramEqualizationMethod(ColorImage.get_channel(1),
GetHistogram(ColorImage.get_channel(1)));
CImg B_Channel = HistogramEqualizationMethod(ColorImage.get_channel(2),
GetHistogram(ColorImage.get_channel(2)));
CImg EqualizedImage = ColorImage;
cimg_forXY(ColorImage, x, y) {
EqualizedImage(x, y, 0) = R_Channel(x, y, 0);
EqualizedImage(x, y, 1) = G_Channel(x, y, 0);
EqualizedImage(x, y, 2) = B_Channel(x, y, 0);
}
if (show) EqualizedImage.display("通道独立均衡化结果");
char FileName[100] = {};
sprintf_s(FileName, "%d_OneChannels_equalize_%s", number++, ImageFileName.c_str());
EqualizedImage.save(FileName);
return EqualizedImage;
}
/*传入三个通道图像计算平均亮度直方图*/
CImg HistogramEqualization::GetAverageHistogram
(CImg img1, CImg img2, CImg img3)
{
CImg histogram(256, 1, 1, 1, 0);
cimg_forXY(img1, x, y) {
++histogram[(int)img1(x, y)];
++histogram[(int)img2(x, y)];
++histogram[(int)img3(x, y)];
}
cimg_forX(histogram, pos) histogram(pos) /= 3;
return histogram;
}
// 功能:对彩色图进行直方图均衡化,先求三个通道的平均直方图
// 输入: 彩色图文件名
// 输出: 均衡化结果
CImg HistogramEqualization::Hist_Equal_ColorImage_ThreeColorChannels(string ImageFileName)
{
CImg ColorImage;
ColorImage.load_bmp(ImageFileName.c_str());
CImg R_Channel = ColorImage.get_channel(0);
CImg G_Channel = ColorImage.get_channel(1);
CImg B_Channel = ColorImage.get_channel(2);
CImg AverageHistogram = GetAverageHistogram(R_Channel, G_Channel, B_Channel);
double CumulativeDistributionFunction[256] = { 0 }; // 灰度直方图的累积分布
double EqualizedResult[256] = { 0 }; // 均衡化结果图
int count = 0;
int L = 256;
int NumOfPixels = ColorImage._height * ColorImage._width;
cimg_forX(AverageHistogram, pos) {
count += AverageHistogram[pos];
CumulativeDistributionFunction[pos] = 1.0 * count / NumOfPixels;
EqualizedResult[pos] = round(CumulativeDistributionFunction[pos] * (L - 1));
}
CImg EqualizedImage = ColorImage;
cimg_forXY(EqualizedImage, x, y) {
EqualizedImage(x, y, 0) = EqualizedResult[R_Channel(x, y)];
EqualizedImage(x, y, 1) = EqualizedResult[G_Channel(x, y)];
EqualizedImage(x, y, 2) = EqualizedResult[B_Channel(x, y)];
}
if (show) EqualizedImage.display("三通道直方图平均后进行均衡化的结果");
char FileName[100] = {};
sprintf_s(FileName, "%d_Threechannels_equalize_%s", number++, ImageFileName.c_str());
EqualizedImage.save(FileName);
return EqualizedImage;
}
这个略复杂。。
RGB转HSI空间公式:
HSI转RGB空间公式:
/*功能:在HSI空间下进行均衡化,然后再转回RGB空间*/
CImg HistogramEqualization::Hist_Equal_ColorImage_HSISpace(string ImageFileName)
{
CImg ColorImage;
ColorImage.load(ImageFileName.c_str());
// 获取RGB通道图像,并归一化
CImg R_Channel = ColorImage.get_channel(0)* 1.0 / 255.0;
CImg G_Channel = ColorImage.get_channel(1) * 1.0 / 255.0;
CImg B_Channel = ColorImage.get_channel(2) * 1.0 / 255.0;
int w = ColorImage._width;
int h = ColorImage._height;
// HSI
CImg Hue(w, h, 1, 1, 0);
CImg Saturation(w, h, 1, 1, 0);
CImg Intensity(w, h, 1, 1, 0);
// for calculate Hue
CImg theta(w, h, 1, 1, 0);
cimg_forXY(Hue, x, y) {
double numerator = R_Channel(x, y, 0) - G_Channel(x, y, 0) + R_Channel(x, y, 0) - B_Channel(x, y, 0);
double denominator = 2.0 * sqrt((R_Channel(x, y, 0) - G_Channel(x, y, 0)) * (R_Channel(x, y, 0) - G_Channel(x, y, 0))
+ (R_Channel(x, y, 0) - B_Channel(x, y, 0))*(G_Channel(x, y, 0) - B_Channel(x, y, 0)));
theta(x, y, 0) = acos(numerator / denominator);
}
cimg_forXY(Hue, x, y) {
if (G_Channel(x, y, 0) >= B_Channel(x, y, 0)) {
Hue(x, y, 0) = theta(x, y, 0);
}
else {
Hue(x, y, 0) = 2 * cimg::PI - theta(x, y, 0);
}
}
// calculate saturation and intensity
cimg_forXY(Intensity, x, y) {
double deno = (R_Channel(x, y, 0) + G_Channel(x, y, 0) + B_Channel(x, y, 0));
if (deno == 0) deno = 1e-12f; // 取极小,近似0
Saturation(x, y, 0) = 1.0 - 3.0 * cimg::min(R_Channel(x, y, 0), B_Channel(x, y, 0), G_Channel(x, y, 0))
/ deno;
Intensity(x, y, 0) = 1.0 * (R_Channel(x, y, 0) + G_Channel(x, y, 0) + B_Channel(x, y, 0)) / 3.0;
if (Saturation(x, y, 0) == 0) Hue(x, y, 0) = 0; // 黑色
}
CImg tmp_Intensity(w, h, 1, 1, 0); // 亮度图像 0~255
cimg_forXY(tmp_Intensity, x, y) {
tmp_Intensity(x, y, 0) = floor(Intensity(x, y, 0) * 255);
}
CImg I_Histogram = GetHistogram(tmp_Intensity); // 亮度直方图,由于rgb通道值/255,需要扩大255
tmp_Intensity = HistogramEqualizationMethod(tmp_Intensity, I_Histogram); // 亮度直方图均衡化
cimg_forXY(Intensity, x, y) {
Intensity(x, y, 0) = tmp_Intensity(x, y, 0) * 1.0 / 255.0;
}
CImg EqualizedImage(w, h, 1, 3, 0);
cimg_forXY(Intensity, x, y) {
if (Hue(x, y, 0) < 2 * cimg::PI / 3 && Hue(x, y, 0) >= 0) { //RG sector
EqualizedImage(x, y, 2) = Intensity(x, y, 0) * (1 - Saturation(x,y,0));
EqualizedImage(x, y, 0) = Intensity(x, y, 0) *(1 + Saturation(x, y, 0) * cos(Hue(x, y, 0)) / cos(cimg::PI / 3 - Hue(x,y,0)));
EqualizedImage(x, y, 1) = 3 * Intensity(x, y, 0) - (EqualizedImage(x,y,2) + EqualizedImage(x, y, 0));
}
else if (Hue(x, y, 0) < 4 * cimg::PI / 3 && Hue(x, y, 0) >= 2 * cimg::PI / 3) { //GB sector
EqualizedImage(x, y, 0) = Intensity(x, y, 0) * (1 - Saturation(x, y, 0));
EqualizedImage(x, y, 1) = Intensity(x, y, 0) *(1 + Saturation(x, y, 0) * cos(Hue(x, y, 0) - 2*cimg::PI/3) / cos(cimg::PI - Hue(x, y, 0)));
EqualizedImage(x, y, 2) = 3 * Intensity(x, y, 0) - (EqualizedImage(x, y, 1) + EqualizedImage(x, y, 0));
}
else if (Hue(x, y, 0) <= 2 * cimg::PI && Hue(x, y, 0) >= 4 * cimg::PI / 3) { // BR sector
EqualizedImage(x, y, 1) = Intensity(x, y, 0) * (1 - Saturation(x, y, 0));
EqualizedImage(x, y, 2) = Intensity(x, y, 0) *(1 + Saturation(x, y, 0) * cos(Hue(x, y, 0) - 4 * cimg::PI / 3) / cos(5 * cimg::PI / 3 - Hue(x, y, 0)));
EqualizedImage(x, y, 0) = 3 * Intensity(x, y, 0) - (EqualizedImage(x, y, 1) + EqualizedImage(x, y, 2));
}
}
CImg resultImage(w, h, 1, 3, 0);
cimg_forXY(EqualizedImage, x, y) {
resultImage(x, y, 0) = 255 * min(max(EqualizedImage(x, y, 0), 0.0), 1.0);
resultImage(x, y, 1) = 255 * min(max(EqualizedImage(x, y, 1), 0.0), 1.0);
resultImage(x, y, 2) = 255 * min(max(EqualizedImage(x, y, 2), 0.0), 1.0);
}
//resultImage = resultImage.normalize(0, 255);
if (show) resultImage.display("HSI空间下均衡化的结果");
char FileName[100] = {};
//sprintf_s(FileName, "%d_HSI_equalize_%s", number++, ImageFileName.c_str());
//resultImage.save(FileName);
return resultImage;
}