Java同步框架AbstractQueuedSynchronizer

作者: 一字马胡
转载标志 【2017-11-03】

更新日志

日期 更新内容 备注
2017-11-03 添加转载标志 持续更新

AbstractQueuedSynchronizer概述

AbstractQueuedSynchronizer是java中非常重要的一个框架类,它实现了最核心的多线程同步的语义,我们只要继承AbstractQueuedSynchronizer就可以非常方便的实现我们自己的线程同步器,java中的锁Lock就是基于AbstractQueuedSynchronizer来实现的。下面首先展示了AbstractQueuedSynchronizer类提供的一些方法:

Java同步框架AbstractQueuedSynchronizer_第1张图片
AbstractQueuedSynchronizer类方法

在类结构上,AbstractQueuedSynchronizer继承了AbstractOwnableSynchronizer,AbstractOwnableSynchronizer仅有的两个方法是提供当前独占模式的线程设置:


   /**
     * The current owner of exclusive mode synchronization.
     */
    private transient Thread exclusiveOwnerThread;

    /**
     * Sets the thread that currently owns exclusive access.
     * A {@code null} argument indicates that no thread owns access.
     * This method does not otherwise impose any synchronization or
     * {@code volatile} field accesses.
     * @param thread the owner thread
     */
    protected final void setExclusiveOwnerThread(Thread thread) {
        exclusiveOwnerThread = thread;
    }

    /**
     * Returns the thread last set by {@code setExclusiveOwnerThread},
     * or {@code null} if never set.  This method does not otherwise
     * impose any synchronization or {@code volatile} field accesses.
     * @return the owner thread
     */
    protected final Thread getExclusiveOwnerThread() {
        return exclusiveOwnerThread;
    }

exclusiveOwnerThread代表的是当前获得同步的线程,因为是独占模式,在exclusiveOwnerThread持有同步的过程中其他的线程的任何同步获取请求将不能得到满足。

至此,需要说明的是,AbstractQueuedSynchronizer不仅支持独占模式下的同步实现,还支持共享模式下的同步实现。在java的锁的实现上就有共享锁和独占锁的区别,而这些实现都是基于AbstractQueuedSynchronizer对于共享同步和独占同步的支持。从上面展示的AbstractQueuedSynchronizer提供的方法中,我们可以发现AbstractQueuedSynchronizer的API大概分为三类:

  • 类似acquire(int)的一类是最基本的一类,不可中断
  • 类似acquireInterruptibly(int)的一类可以被中断
  • 类似tryAcquireNanos(int, long)的一类不仅可以被中断,而且可以设置阻塞时间

上面的三种类型的API分为独占和共享两套,我们可以根据我们的需求来使用合适的API来做多线程同步。

下面是一个继承AbstractQueuedSynchronizer来实现自己的同步器的一个示例:


 *class Mutex implements Lock, java.io.Serializable {
 *
 *   // Our internal helper class
 *   private static class Sync extends AbstractQueuedSynchronizer {
 *     // Reports whether in locked state
 *     protected boolean isHeldExclusively() {
 *       return getState() == 1;
 *     }
 *
 *     // Acquires the lock if state is zero
 *     public boolean tryAcquire(int acquires) {
 *       assert acquires == 1; // Otherwise unused
 *       if (compareAndSetState(0, 1)) {
 *         setExclusiveOwnerThread(Thread.currentThread());
 *         return true;
 *       }
 *       return false;
 *     }
 *
 *     // Releases the lock by setting state to zero
 *     protected boolean tryRelease(int releases) {
 *       assert releases == 1; // Otherwise unused
 *       if (getState() == 0) throw new IllegalMonitorStateException();
 *       setExclusiveOwnerThread(null);
 *       setState(0);
 *       return true;
 *     }
 *
 *     // Provides a Condition
 *     Condition newCondition() { return new ConditionObject(); }
 *
 *     // Deserializes properly
 *     private void readObject(ObjectInputStream s)
 *         throws IOException, ClassNotFoundException {
 *       s.defaultReadObject();
 *       setState(0); // reset to unlocked state
 *     }
 *   }
 *
 *   // The sync object does all the hard work. We just forward to it.
 *   private final Sync sync = new Sync();
 *
 *   public void lock()                { sync.acquire(1); }
 *   public boolean tryLock()          { return sync.tryAcquire(1); }
 *   public void unlock()              { sync.release(1); }
 *   public Condition newCondition()   { return sync.newCondition(); }
 *   public boolean isLocked()         { return sync.isHeldExclusively(); }
 *   public boolean hasQueuedThreads() { return sync.hasQueuedThreads(); }
 *   public void lockInterruptibly() throws InterruptedException {
 *     sync.acquireInterruptibly(1);
 *   }
 *   public boolean tryLock(long timeout, TimeUnit unit)
 *       throws InterruptedException {
 *     return sync.tryAcquireNanos(1, unit.toNanos(timeout));
 *   }
 * }}

Mutex实现的功能是:使用0来代表可以获得同步变量,使用1来代表需要等待同步变量被释放再获取,这是一个简单的独占锁实现,任何时刻只会有一个线程获得锁,其他请求获取锁的线程都会阻塞等待直到锁被释放,等待的线程将再次竞争来获得锁。Mutex给了我们很好的范例,我们要实现自己的线程同步器,那么就继承AbstractQueuedSynchronizer实现其三个抽象方法,然后使用该实现类来做lock和unlock的操作,可以发现,AbstractQueuedSynchronizer框架为我们铺平了道路,我们只需要做一点点改变就可以实现高效安全的线程同步去,下文中将分析AbstractQueuedSynchronizer是如何为我么提供如此强大得同步能力的。

AbstractQueuedSynchronizer实现细节

独占模式

AbstractQueuedSynchronizer使用一个volatile类型的int来作为同步变量,任何想要获得锁的线程都需要来竞争该变量,获得锁的线程可以继续业务流程的执行,而没有获得锁的线程会被放到一个FIFO的队列中去,等待再次竞争同步变量来获得锁。AbstractQueuedSynchronizer为每个没有获得锁的线程封装成一个Node再放到队列中去,下面先来分析一下Node这个数据结构:


        /** waitStatus value to indicate thread has cancelled */
        static final int CANCELLED =  1;
        /** waitStatus value to indicate successor's thread needs unparking */
        static final int SIGNAL    = -1;
        /** waitStatus value to indicate thread is waiting on condition */
        static final int CONDITION = -2;
        /**
         * waitStatus value to indicate the next acquireShared should
         * unconditionally propagate
         */
        static final int PROPAGATE = -3;

上面展示的是Node定义的四个状态,需要注意的是只有一个状态是大于0的,也就是CANCELLED,也就是被取消了,不需要为此线程协调同步变量的竞争了。其他几个的意义见注释。上一小节说到,AbstractQueuedSynchronizer提供独占式和共享式两种模式,AbstractQueuedSynchronizer使用下面的两个变量来标志是共享还是独占模式:


        /** Marker to indicate a node is waiting in shared mode */
        static final Node SHARED = new Node();
        /** Marker to indicate a node is waiting in exclusive mode */
        static final Node EXCLUSIVE = null;

有趣的是,Node使用了一个变量nextWaiter来代表两种含义,当在独占模式下,nextWaiter表示下一个等在ConditionObject上的Node,在共享模式下就是SHARED,因为对于任何一个同步器来说,都不可能同时实现共享和独占两种模式的,更为专业的解释为:


        /**
         * Link to next node waiting on condition, or the special
         * value SHARED.  Because condition queues are accessed only
         * when holding in exclusive mode, we just need a simple
         * linked queue to hold nodes while they are waiting on
         * conditions. They are then transferred to the queue to
         * re-acquire. And because conditions can only be exclusive,
         * we save a field by using special value to indicate shared
         * mode.
         */
        Node nextWaiter;

AbstractQueuedSynchronizer使用双向链表来管理请求同步的Node,保存了链表的head和tail,新的Node将会被插到链表的尾端,而链表的head总是代表着获得锁的线程,链表头的线程释放了锁之后会通知后面的线程来竞争共享变量。下面分析一下AbstractQueuedSynchronizer是如何实现独占模式下的acquire和release的。

首先,使用方法acquire(int)可以竞争同步变量,下面是调用链路:


    public final void acquire(int arg) {
        if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }
    
    private Node addWaiter(Node mode) {
        Node node = new Node(Thread.currentThread(), mode);
        // Try the fast path of enq; backup to full enq on failure
        Node pred = tail;
        if (pred != null) {
            node.prev = pred;
            if (compareAndSetTail(pred, node)) {
                pred.next = node;
                return node;
            }
        }
        enq(node);
        return node;
    }
   
    final boolean acquireQueued(final Node node, int arg) {
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next = null; // help GC
                    failed = false;
                    return interrupted;
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }        

首先会调用方法tryAcquire来尝试获的锁,而tryAcquire这个方法是需要子类来实现的,子类的实现无非就是通过compareAndSetState、getState、setState三个方法来操作同步变量state,子类的方法实现需要根据各自的需求场景来实现。继续分析上面的acquire流程,如果tryAcquire返回true了,也就是成功改变了state的值了,也就是获得了同步锁了,那么就可以退出了。如果返回false,说明有其他的线程获得锁了,这个时候AbstractQueuedSynchronizer会使用addWaiter将当前线程添加到等待队列的尾部等待再次竞争。需要注意的是将当前线程标记为了独占模式。然后重头戏来了,方法acquireQueued使得新添加的Node在一个for死循环中不断的轮询,也就是自旋,acquireQueued方法退出的条件是:

  1. 该节点的前驱节点是头结点,头结点代表的是获得锁的节点,只有它释放了state其他线程才能获得这个变量的所有权
  2. 在条件1的前提下,方法tryAcquire返回true,也就是可以获得同步资源state

满足上面两个条件之后,这个Node就会获得锁,根据AbstractQueuedSynchronizer的规定,获得锁的Node必须是链表的头结点,所以,需要将当前节点设定为头结点。那如果不符合上面两个条件的Node会怎么样呢?看for循环里面的第二个分支,首先是shouldParkAfterFailedAcquire方法,看名字应该是说判断是否应该park当前该线程,然后是方法parkAndCheckInterrupt,这个方法是在shouldParkAfterFailedAcquire返回true的前提之下才会之下,意思就是首先判断一下是否需要park该Node,如果需要,那么就park它。关于线程的park和unpark,AbstractQueuedSynchronizer使用了偏向底层的技术来实现,在此先不做分析。现在来分析一下再什么情况下Node会被park(block):

    private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
        int ws = pred.waitStatus;
        if (ws == Node.SIGNAL)
            /*
             * This node has already set status asking a release
             * to signal it, so it can safely park.
             */
            return true;
        if (ws > 0) {
            /*
             * Predecessor was cancelled. Skip over predecessors and
             * indicate retry.
             */
            do {
                node.prev = pred = pred.prev;
            } while (pred.waitStatus > 0);
            pred.next = node;
        } else {
            /*
             * waitStatus must be 0 or PROPAGATE.  Indicate that we
             * need a signal, but don't park yet.  Caller will need to
             * retry to make sure it cannot acquire before parking.
             */
            compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
        }
        return false;
    }

可以发现,只有当Node的前驱节点的状态为Node.SIGNAL的时候才会返回true,也就是说,只有当前驱节点的状态变为了Node.SIGNAL,才会去通知当前节点,所以如果前驱节点是Node.SIGNAL的,那么当前节点就可以放心的park就好了,前驱节点在完成工作之后在释放资源的时候会unpark它的后继节点。下面看一下release的过程:


    public final boolean release(int arg) {
        if (tryRelease(arg)) {
            Node h = head;
            if (h != null && h.waitStatus != 0)
                unparkSuccessor(h);
            return true;
        }
        return false;
    }
    
    private void unparkSuccessor(Node node) {
        /*
         * If status is negative (i.e., possibly needing signal) try
         * to clear in anticipation of signalling.  It is OK if this
         * fails or if status is changed by waiting thread.
         */
        int ws = node.waitStatus;
        if (ws < 0)
            compareAndSetWaitStatus(node, ws, 0);

        /*
         * Thread to unpark is held in successor, which is normally
         * just the next node.  But if cancelled or apparently null,
         * traverse backwards from tail to find the actual
         * non-cancelled successor.
         */
        Node s = node.next;
        if (s == null || s.waitStatus > 0) {
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)
            LockSupport.unpark(s.thread);
    }    

首先通过tryRelease方法来保证资源安全完整的释放了之后,如果发现节点的状态小于0,会变为0。0代表的是初始化的状态,当前的线程已经完成了工作,释放了锁,就要恢复原来的样子。然后会获取该节点的后继节点,如果没有后续节点了,或者后继节点已经被取消了,那么从尾部开始向前找第一个符合要求的节点,然后unpark它。

上面介绍了一对acquire-release,如果希望线程可以在竞争的时候被中断,可以使用acquireInterruptibly。如果希望加上获取锁的时间限制,可以使用tryAcquireNanos(int, long)方法来获取。

共享模式

和独占模式一样,分析一下acquireShared的过程:


    public final void acquireShared(int arg) {
        if (tryAcquireShared(arg) < 0)
            doAcquireShared(arg);
    }
    
    private void doAcquireShared(int arg) {
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            boolean interrupted = false;
            for (;;) {
                final Node p = node.predecessor();
                if (p == head) {
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        if (interrupted)
                            selfInterrupt();
                        failed = false;
                        return;
                    }
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted = true;
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }    

获取锁的流程如下:

  1. 尝试使用tryAcquireShared方法,如果返回值大于等于0则表示成功,否则运行doAcquireShared方法
  2. 将当前竞争同步的线程添加到链表尾部,然后自旋
  3. 获取前驱节点,如果前驱节点是头节点,也就是说前驱节点现在持有锁,那么继续运行4,否则park该节点等待被unpark
  4. 使用tryAcquireShared方法来竞争,如果返回值大于等于0,那么就算是获取成功了,否则继续自旋尝试

共享模式下的release流程:


    public final boolean releaseShared(int arg) {
        if (tryReleaseShared(arg)) {
            doReleaseShared();
            return true;
        }
        return false;
    }
    
    private void doReleaseShared() {
        for (;;) {
            Node h = head;
            if (h != null && h != tail) {
                int ws = h.waitStatus;
                if (ws == Node.SIGNAL) {
                    if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                        continue;            // loop to recheck cases
                    unparkSuccessor(h);
                }
                else if (ws == 0 &&
                         !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                    continue;                // loop on failed CAS
            }
            if (h == head)                   // loop if head changed
                break;
        }
    }    

    private void unparkSuccessor(Node node) {
        int ws = node.waitStatus;
        if (ws < 0)
            compareAndSetWaitStatus(node, ws, 0);

        Node s = node.next;
        if (s == null || s.waitStatus > 0) {
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)
            LockSupport.unpark(s.thread);
    }

首先尝试使用tryReleaseShared方法来释放资源,如果释放失败,则返回false,如果释放成功了,那么继续执行doReleaseShared方法唤醒后续节点来竞争资源。需要注意的是,共享模式和独占模式的区别在于,独占模式只允许一个线程获得资源,而共享模式允许多个线程获得资源。所以在独占模式下只有当tryAcquire返回true的时候我们才能确定获得资源了,而在共享模式下,只要tryAcquireShared返回值大于等于0就可以说明获得资源了,所以你要确保你需要实现的需求和AbstractQueuedSynchronizer希望的是一致的。

桶独占模式一样,共享模式也有其他的两种API:

  • acquireSharedInterruptibly:支持相应中断的资源竞争
  • tryAcquireSharedNanos:可以设定时间的资源竞争

本文大概描述了AbstractQueuedSynchronizer框架的一些基本情况,具体的细节没有深究,但是AbstractQueuedSynchronizer作为Java中锁实现的底层支撑,需要好好研究一下,后续会基于AbstractQueuedSynchronizer来分析java中各种锁的实现。

你可能感兴趣的:(Java同步框架AbstractQueuedSynchronizer)