维护一个W*W的矩阵,初始值均为S.
每次操作可以增加某格子的权值,或询问某子矩阵的总权值.
修改操作数M<=160000,询问数Q<=10000,W<=2000000.
保证答案不会超过int范围
给每个操作一个时间 t t t,第一个操作是1,第二个是2,以此类推
考虑对于一个询问 ( a x , a y , b x , b y , t ) (ax,ay,bx,by,t) (ax,ay,bx,by,t),
我们就是要找所有 ( x , y , z ) (x,y,z) (x,y,z)满足 a x < = x < = b x , a y < = y < = b y , z < t ax<=x<=bx,ay<=y<=by,z<t ax<=x<=bx,ay<=y<=by,z<t的增加操作的个数
坐标占两维,时间占一维
那么这个就是一个三维偏序问题,cdp分治套树状数组即可
#include
#include
#include
#include
#include
#include
#define rep(i, st, ed) for (int i = st; i <= ed; i++)
#define rwp(i, ed, st) for (int i = ed; i >= st; i--)
#define mt(x) memset(x, 0, sizeof(x))
#define N 200005
using namespace std;
struct Node {
int x, y, z, t, opt, mark;
}C[N*5], tmp[N*5];
int zyf[N], ans[N], m, cdp, tot, orz;
bool cmp(Node aa, Node bb) {
if (aa.x == bb.x && aa.y == bb.y) return aa.t < bb.t;
return (aa.x == bb.x) ? aa.y < bb.y : aa.x < bb.x;
}
void Ins(int x, int y) {
for (; x <= orz; x += (x & (-x))) zyf[x] += y;
}
int Cal(int x) {
int rp = 0;
for (; x; x -= (x & (-x))) rp += zyf[x];
return rp;
}
void cdq(int L, int R) {
if (R - L <= 1) return;
int mid = (L + R) >> 1;
cdq(L, mid);
cdq(mid, R);
int p = L, q = mid, cnt = 0;
while (p < mid && q < R) {
if (C[p].y <= C[q].y) {
if (C[p].opt == 1) Ins(C[p].t + 1, C[p].z);
tmp[++cnt] = C[p++];
} else {
if (C[q].opt == 2) ans[C[q].mark] -= Cal(C[q].t);
else if (C[q].opt == 3) ans[C[q].mark] += Cal(C[q].t);
tmp[++cnt] = C[q++];
}
}
while (q < R) {
if (C[q].opt == 2) ans[C[q].mark] -= Cal(C[q].t);
else if (C[q].opt == 3) ans[C[q].mark] += Cal(C[q].t);
tmp[++cnt] = C[q++];
}
rep(i, L, p - 1) if (C[i].opt == 1) Ins(C[i].t + 1, -C[i].z);
while (p < mid) tmp[++cnt] = C[p++];
rep(i, 1, cnt) C[L + i - 1] = tmp[i];
}
int main() {
scanf("%d %d", &m, &m);
int ax, ay, bx, by, opt;
while (1) {
scanf("%d", &opt);
++orz;
if (opt == 3) break;
if (opt == 1) ++tot, scanf("%d %d %d", &C[tot].x, &C[tot].y, &C[tot].z), C[tot].opt = 1, C[tot].t = orz;
else {
++cdp;
scanf("%d %d %d %d", &ax, &ay, &bx, &by);
if (ax > bx || (ax == bx && ay > by)) ans[cdp] = 0;
else {
if (ay > 1) C[++tot].x = bx, C[tot].y = ay - 1, C[tot].opt = 2, C[tot].mark = cdp, C[tot].t = orz;
if (ax > 1) C[++tot].x = ax - 1, C[tot].y = by, C[tot].opt = 2, C[tot].mark = cdp, C[tot].t = orz;
if (ax > 1 && ay > 1) C[++tot].x = ax - 1, C[tot].y = ay - 1, C[tot].opt = 3, C[tot].mark = cdp, C[tot].t = orz;
C[++tot].x = bx, C[tot].y = by, C[tot].opt = 3, C[tot].mark = cdp, C[tot].t = orz;
}
}
}
sort(C + 1, C + tot + 1, cmp);
cdq(1, tot + 1);
rep(i, 1, cdp) printf("%d\n", ans[i]);
return 0;
}