Machine Learning in Action --- Peter Harrington

Part 1 分类


Chapter1  机器学习基础

https://blog.csdn.net/JachinMa/article/details/88703866

Chapter2   k-近邻算法

https://blog.csdn.net/JachinMa/article/details/88770841

Chapter3  决策树

https://blog.csdn.net/JachinMa/article/details/88809544

Chapter4  基于概率论的分类方法:朴素贝叶斯

https://blog.csdn.net/JachinMa/article/details/88832864

Chapter5  Logistic回归

https://blog.csdn.net/JachinMa/article/details/88858049

Chapter6  支持向量机

https://blog.csdn.net/JachinMa/article/details/88882463 原理

https://blog.csdn.net/JachinMa/article/details/88903527 simpleSMo

https://blog.csdn.net/JachinMa/article/details/88919987 优化smo

https://blog.csdn.net/JachinMa/article/details/88960054 核函数及手写测试

Chapter7 利用AdaBoost元算法提高分类性能

https://blog.csdn.net/JachinMa/article/details/88985870



Part 2 利用回归预测数值型数据


Chapter8 预测数值型数据:回归

https://blog.csdn.net/JachinMa/article/details/89036845 原理

https://blog.csdn.net/JachinMa/article/details/89198011 爬虫实践

Chapter9 树回归

https://blog.csdn.net/JachinMa/article/details/89353584



Part3 非监督分类


Chapter10 利用K-均值聚类算法对未标注数据分组

https://blog.csdn.net/JachinMa/article/details/89391000 自写简单k-均值代码

https://blog.csdn.net/JachinMa/article/details/89409184 书上代码

https://blog.csdn.net/JachinMa/article/details/89425808 二分k-均值

https://blog.csdn.net/JachinMa/article/details/89497933 利用高德API对城市进行聚类

Chapter11 使用Apriori算法进行关联分析

https://blog.csdn.net/JachinMa/article/details/89528519

Chapter12 使用FP-growth算法来高效发现频繁项集

https://blog.csdn.net/JachinMa/article/details/89812766 原理及构建FP树

https://blog.csdn.net/JachinMa/article/details/89852582 利用FP树挖掘频繁项集



Part 4 其它工具


Chapter13 利用PCA来简化数据

Chapter14 利用SVD简化数据

Chapter15 大数据与MapReduce

你可能感兴趣的:(Machine Learning in Action --- Peter Harrington)