- Docker中GPU的使用指南
俞兆鹏
云原生实践docker容器运维
在当今的计算领域,GPU(图形处理单元)已经成为了加速各种计算密集型任务的关键硬件,特别是在深度学习、科学模拟和高性能计算等领域。Docker作为流行的容器化平台,允许开发者将应用程序及其依赖打包成一个可移植的容器,在不同的环境中运行。当需要在Docker容器中利用GPU的计算能力时,我们需要进行一些特定的配置和设置。本文将详细介绍如何在Docker中使用GPU,从环境准备到实际应用,帮助你充分利
- 【学习笔记5】Linux下cuda、cudnn、pytorch版本对应关系
longii11
linuxpytorch运维
一、cuda和cudnnNVIDIACUDAToolkit(CUDA)为创建高性能GPU加速应用程序提供了一个开发环境。借助CUDA工具包,您可以在GPU加速的嵌入式系统、桌面工作站、企业数据中心、基于云的平台和HPC超级计算机上开发、优化和部署您的应用程序。该工具包包括GPU加速库、调试和优化工具、C/C++编译器以及用于部署应用程序的运行时库。全球的深度学习研究人员和框架开发人员都依赖cuDN
- MySQL锁机制深度解析:从乐观锁到悲观锁的哲学思辨与技术实践
一、并发控制的本质与挑战在数据库系统的核心地带,并发控制始终是保障数据一致性的核心命题。当每秒百万级的交易请求在金融系统中穿梭,当电商平台的库存数字在促销瞬间剧烈波动,当社交媒体的点赞计数以指数级增长时,数据库工程师们必须直面并发控制的终极挑战:如何在保证数据一致性的前提下,实现最大程度的并发性能。这个问题的解决之道,本质上是对"时间"这个维度的不同处理策略。悲观锁(PessimisticLock
- 大白话react第十五章React 应用性能优化深度实践
IT木昜
大白话reactreact.js前端前端框架
大白话react第十五章React应用性能优化深度实践1.React服务端渲染(SSR)的深入运用白话解释:之前咱们做的网页大多是在浏览器里把页面一点点搭建起来,这得花点时间。服务端渲染呢,就是让服务器提前把网页组装好,直接发给浏览器,这样页面打开的速度就快多啦,用户体验也更好。代码示例:用Next.js这个框架来做服务端渲染。Next.js是基于React的,能很方便地实现服务端渲染。//pag
- LLM辅助编程:代码自动生成与优化
AI智能涌现深度研究
计算机软件编程原理与应用实践DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
LLM,代码生成,代码优化,编程辅助,AI编程,自然语言处理,深度学习1.背景介绍随着软件开发的日益复杂化,程序员面临着越来越高的开发压力和效率要求。传统的编程方式依赖于手动编写代码,这不仅耗时费力,而且容易出现错误。近年来,随着深度学习技术的快速发展,基于大型语言模型(LLM)的代码生成和优化技术逐渐成为软件开发领域的新兴热点。LLM是一种强大的人工智能模型,能够理解和生成人类语言。通过训练大量
- 国内开源深度学习框架
we19a0sen
深度学习人工智能
目录一、国内开源深度学习框架1、PaddlePaddle(百度飞浆)2、MindSpore(华为昇思)3、MegEngine(旷视天元)4、OneFlow(一流科技)5、Jittor(清华计图)二、快速入手1、PaddlePaddle(百度飞浆)2、MindSpore(华为昇思)3、MegEngine(旷视天元)4、OneFlow(一流科技)5、Jittor(清华计图)三、基础教程1、Paddle
- 高频算法题精讲(Java解法)——算法+实际场景化拆解
大熊计算机毕设
技术博文算法java开发语言
结合高频算法题,逐步带你走向深度理解。无论你是准备面试,还是在开发中需要优化,掌握这些基础的算法思维将会让你事半功倍。第一部分:算法的基础理论与实际意义在进入具体的算法问题之前,我们首先要理解一个问题:为什么要学习算法?在日常编程中,我们往往会遇到各种问题,而每一个问题背后都有不同的解法。而高效的算法不仅仅是为了拿到面试的offer,它们能帮助我们在工作中提升性能,减少复杂度,使得产品运行更加顺畅
- 【力扣Hot100】543.二叉树的直径
Data跳动
力扣Hot100二叉树算法数据结构javaleetcode
题目:二叉树的直径分析:还记不记得如何求二叉树的最大深度,那么如何求穿过根节点的直径,很显然答案就是将左子树的最大深度+右子树的最大深度;但是题目中要求最大直径,也就是说最大直径路径不一定是穿过根节点的,所以要设置一个变量max,用来记录所有的子树的直径,然后更新最大值。思路:设置一个全局变量max;对root进行求最大深度,调用下maxDeepth方法;越过叶子节点,返回0;计算左子树最大深度l
- HTML5新特性深度解析
longdong7889
前端学习html5前端html
HTML5新特性深度解析HTML5作为现代Web开发的基石,其LivingStandard模式持续为开发者带来创新工具。本文将深入剖析2023年值得关注的最新特性,通过技术解析与实战示例展现其应用场景。一、革新性API赋能Web应用1.1PopoverAPI:原生交互革命显示详情悬浮内容支持自动关闭和层级管理浏览器原生实现弹窗系统支持auto/manual状态控制无需JavaScript实现显隐逻
- 神经网络VS决策树
Persistence is gold
神经网络决策树人工智能
神经网络(NeuralNetworks)和决策树(DecisionTrees)是两种不同的机器学习算法,各自具有独特的优点和适用场景。以下是它们的详细比较:神经网络优点:强大的学习能力:神经网络,尤其是深度神经网络,能够自动学习数据中的复杂特征,可以处理高维和非线性的问题。适用性广泛:神经网络适用于分类、回归、图像处理、语音识别、自然语言处理等多种任务。多层结构:通过增加隐藏层,神经网络可以逐层提
- Gin框架深度解剖:中间件的实现原理
魔法小匠
Go语言深度探索与实战golangGingin框架解析gin框架原理gin框架源码中间件实现原理
引言Gin是一个用Go语言编写的高性能Web框架,以其简洁的API和卓越的性能著称。在Gin中,中间件(Middleware)是一个非常重要的概念,它允许我们在请求处理的前后执行一些通用的逻辑,比如日志记录、身份验证、错误处理等。本文将深入探讨Gin框架中中间件的实现原理,帮助读者更好地理解和使用Gin框架。什么是中间件?中间件是一种在HTTP请求到达目标处理函数之前或之后执行的函数。它可以用来处
- Gin框架深度解剖:路由树的实现原理
魔法小匠
Go语言深度探索与实战gingolanggin框架原理高性能路由树GinRouter
引言Gin是Golang中最受欢迎的Web框架之一,以其高性能和简洁的API设计著称。Gin的核心之一是其高效的路由机制,而路由机制的核心则是**路由树**的实现。本文将深入探讨Gin框架中路由树的实现原理,帮助读者理解Gin是如何通过路由树来高效处理HTTP请求的。1.路由树的基本概念在Web框架中,路由是指将HTTP请求的URL路径映射到相应的处理函数。Gin框架使用了一种称为**前缀树(Tr
- 【免费收藏】清华大学DeepSeek使用手册合集 600页完整版
周师姐
AI写作学习人工智能pdf
DeepSeek资料链接:https://pan.quark.cn/s/c927326f70c5在人工智能席卷全球的当下,DeepSeek作为前沿深度学习技术,正推动着全面AI时代的到来。今日,特别为大家推荐《DeepSeek:从入门到精通》,本书由清华大学新闻与传播学院新媒体研究中心元宇宙文化实验室的余梦珑博士后团队精心编写。它深度解析DeepSeek的技术核心,详尽阐释其应用场景与操作方法,尤
- 深度神经网络——决策树的实现与剪枝
知来者逆
人工智能dnn决策树人工智能神经网络深度学习机器学习
概述决策树是一种有用的机器学习算法,用于回归和分类任务。“决策树”这个名字来源于这样一个事实:算法不断地将数据集划分为越来越小的部分,直到数据被划分为单个实例,然后对实例进行分类。如果您要可视化算法的结果,类别的划分方式将类似于一棵树和许多叶子。这是决策树的快速定义,但让我们深入了解决策树的工作原理。更好地了解决策树的运作方式及其用例,将帮助您了解何时在机器学习项目中使用它们。决策树的结构决策树的
- YOLOv12改进之A2(区域注意力)
清风AI
深度学习算法详解及代码复现深度学习机器学习计算机视觉人工智能算法
注意力回顾注意力机制作为深度学习领域的核心技术,已广泛应用于自然语言处理和计算机视觉等多个领域。在YOLOv12改进之A2中,注意力机制扮演着关键角色。已有研究成果包括:Transformer架构:引入了自注意力机制,有效捕捉输入序列中的长距离依赖关系。CBAM模块:提出了通道和空间注意力的结合,显著提升了图像分类和目标检测的性能。SENet:引入了通道注意力机制,通过自适应学习特征通道的重要性,
- 【c语言日寄】二维数组的深度解构
siy2333
c语言日寄c语言开发语言笔记学习
【作者主页】siy2333【专栏介绍】⌈c语言日寄⌋:这是一个专注于C语言刷题的专栏,精选题目,搭配详细题解、拓展算法。从基础语法到复杂算法,题目涉及的知识点全面覆盖,助力你系统提升。无论你是初学者,还是进阶开发者,这里都能满足你的需求!【食用方法】1.根据题目自行尝试2.查看基础思路完善题解3.学习拓展算法【Gitee链接】资源保存在我的Gitee仓库:https://gitee.com/siy
- P1019 [NOIP 2000 提高组] 单词接龙(深度搜索)
week_泽
算法深度优先
题目背景注意:本题为上古NOIP原题,不保证存在靠谱的做法能通过该数据范围下的所有数据。NOIP2000提高组T3题目描述单词接龙是一个与我们经常玩的成语接龙相类似的游戏,现在我们已知一组单词,且给定一个开头的字母,要求出以这个字母开头的最长的“龙”(每个单词都最多在“龙”中出现两次),在两个单词相连时,其重合部分合为一部分,例如beast和astonish,如果接成一条龙则变为beastonis
- Java阻塞队列深度解析:高并发场景下的安全卫士
没什么技术
java阻塞队列
一、阻塞队列的核心价值在电商秒杀系统中,瞬时涌入的10万请求如果直接冲击数据库,必然导致系统崩溃。阻塞队列如同一个智能缓冲带,通过流量削峰和异步解耦两大核心能力,成为高并发系统的核心组件。二、Java阻塞队列实现类对比队列实现类数据结构锁机制适用场景吞吐量ArrayBlockingQueue数组单锁ReentrantLock固定容量场景中LinkedBlockingQueue链表双锁分离高吞吐量生
- 揭秘AWS GPU实例:以极致AI算力与成本优化,重塑企业智能竞争力
AWS官方合作商
人工智能aws云计算gpu算力
在AI模型规模指数级增长的今天,算力已成为企业创新的胜负手。面对动辄千亿参数的LLM大模型训练、实时高并发的AI推理场景,如何兼顾超强算力与极致成本?本文将深度解析AWSGPU实例的颠覆性技术方案,带您解锁AI时代的核心生产力。一、AWSGPU实例:为AI而生的算力引擎1.1硬件级加速:定义行业标杆NVIDIA顶级芯片阵容:搭载A100/V100TensorCoreGPU(P4/P3实例)、最新H
- 连锁餐饮企业数字化转型:击碎同质化“魔咒”,解锁增长“新密码”
人工智能数据库
3月3日,蜜雪冰城以千亿港元市值登陆港交所,创港股IPO冻资纪录。这个从河南街头走出的"雪王",用28年构建了覆盖全球4.6万+门店的供应链帝国,其数字化能力正是支撑"高质平价"模式的核心引擎。AMT企源曾有幸深度参与过蜜雪冰城数字化体系规划工作,助力其谋划数字化蓝图,为其规模化扩张和品牌升级奠定坚实基础。放眼当今竞争激烈的餐饮市场,尤其是现制茶饮行业,CR5(行业内排名前五的企业所占的市场份额总
- 深度剖析 JavaScript 变量提升与暂时性死区:原理、实战与避坑指南
在JavaScript中,变量提升与暂时性死区影响着着程序的运行逻辑、性能表现以及可维护性。接下来将从底层原理、实际场景案例以及最佳实践全方位展开深度剖析。变量提升:JavaScript引擎背后的“隐形重构”JavaScript在执行代码前,引擎会率先开启编译流程,其中变量提升堪称关键一环。使用var关键字声明的变量以及函数声明,都会被自动“提升”至所在作用域的顶部。这一过程并非物理层面挪动代码,
- 《从信息论视角:DataWorks平台下人工智能探寻最优数据编码的深度剖析》
程序猿阿伟
人工智能
在数字化时代,数据如汹涌浪潮般不断涌现,其规模之大、增长速度之快超乎想象。企业和组织每天都要面对海量数据的存储与传输挑战,如何在有限的资源条件下高效处理这些数据,成为亟待解决的关键问题。此时,信息论与人工智能算法为我们开辟了一条新的探索路径,尤其在DataWorks这样强大的大数据平台上,二者的结合蕴含着巨大的潜力。信息论,作为一门研究信息的度量、传输、存储和处理的学科,为理解数据的本质提供了深刻
- 《从信息论视角:DataWorks平台下人工智能探寻最优数据编码的深度剖析》
人工智能深度学习
在数字化时代,数据如汹涌浪潮般不断涌现,其规模之大、增长速度之快超乎想象。企业和组织每天都要面对海量数据的存储与传输挑战,如何在有限的资源条件下高效处理这些数据,成为亟待解决的关键问题。此时,信息论与人工智能算法为我们开辟了一条新的探索路径,尤其在DataWorks这样强大的大数据平台上,二者的结合蕴含着巨大的潜力。信息论,作为一门研究信息的度量、传输、存储和处理的学科,为理解数据的本质提供了深刻
- Grok 3能否打破大模型的魔咒?
TGITCIC
AI-大模型的落地之道grokgrok3大模型小模型scalinglaw开源大模型
新模型旧魔咒Grok3的问世,仿佛是科技界的一声惊雷。面对老掉牙的大模型法则,大家不禁要问:这到底意味着什么?以前,一提深度学习就能引出一场血雨腥风,现如今却有人说“没钱也能玩”。这风浪可真是一波未平一波又起。也许这就是科技的魅力:一统江湖的法则瞬间瓦解。缩小与提升大模型不再是唯一的解决方案,大家发现,原来小模型也可以撬动市场。不过,面对如何提升模型的智商,各路英雄却依然不得不面对两个选择:大力度
- 深度学习_第二轮
Humingway
深度学习深度学习人工智能
损失函数对偏置和权重求导,x、y作为常量确实,当进行模型训练时,(x)和(y)分别代表输入特征和对应的输出值,它们以数据点对的形式存在,一个数据集中通常包含多对这样的数据。每一对((x_i),(y_i))代表了数据集中的一个样本。在计算损失函数的梯度(即关于权重的偏导数)时,需要考虑整个数据集中的所有样本。对于每个样本((x_i),(y_i)),我们计算其对损失函数的贡献,并通过求和或平均这些贡献
- 对深度学习中的基本概念—梯度的理解
Humingway
深度学习深度学习人工智能
本文讨论一下对“梯度”的理解。“梯度”是深度学习中基本又非常核心的概念,没有它就没有人工智能的今天。然而,即使抛开令人眼花缭乱的术语(比如sgd、ada、moment、adam)不谈,即使最简单的“梯度”本身,也值得讨论一下。1.提出问题该如何理解梯度?让我们结合具体的例子来体会一下。2.定义例子首先,我们定义一个简单的例子,来模拟一下深度学习的学习过程。已知:有一个正确的数据对(或者叫样本),(
- 深度 | 车载语音群雄并起共争智能座舱新高地
数据堂官方账号
分享人工智能语音识别
不论是苹果公司iOS系统中的智能语言助手“Siri”,还是微软Windows系统中的“Cortana”,智能语音交互早已融入我们生活之中。随着汽车产业的发展,用户消费形态的改变,自动驾驶、智能座舱、新能源这些概念已经逐渐落地成为现实,智能语音交互与汽车之间也擦出了别样的火花。由于驾驶汽车无法解放双手,对于人机互动的需求,则更多需要通过语言来实现。因此,结合了人工智能的车载语音交互系统作为汽车智能网
- 【工具篇】【深度解析字节跳动AI编程工具Trae:中文开发者的新利器】
再见孙悟空_
【2025AI学习从零单排系列】【2025AI工具合集】AI编程Trae人工智能CursorAI开发AI代码AI插件
一、Trae工具基本信息1.1背景与定位Trae是字节跳动在2025年1月正式推出的AI集成开发环境(IDE),专为中文开发者深度定制,目标是解决现有工具(如Cursor、VSCode)对中文支持不足的问题。它基于大模型技术(如GPT-4o、Claude-3.5-Sonnet),主打AI代码自动生成和智能开发辅助,被官方称为“从Copilot到Autopilot的进化”。1.2核心功能AI代码生成
- Trae国内版发布,中国首款AI 原生IDE 正式上线,配置Doubao-1.5-pro,支持切换满血版DeepSeek 模型
荣华富贵8
程序员的知识储备1程序员的知识储备2程序员的知识储备3人工智能ide
标题:Trae国内版发布:开启AI原生IDE的全新时代正文:在当今软件开发领域,人工智能正在逐渐改变开发者的日常工作方式。作为中国首款真正从底层深度融合AI技术的原生IDE(集成开发环境),Trae国内版正式上线,成为国内开发工具领域的里程碑式创新。这一产品不仅标志着中国开发者生态的智能化迈出关键一步,更通过其先进的技术和灵活的AI模型支持,为开发者提供了全新的编程体验。什么是AI原生IDE?为什
- STM32旋转编码器驱动详解:方向判断、卡死处理与代码分析 | 零基础入门STM32第四十八步
触角01010001
STM32stm32嵌入式硬件单片机
主题内容教学目的/扩展视频旋转编码器电路原理,跳线设置,结构分析。驱动程序与调用。熟悉电路和驱动程序。师从洋桃电子,杜洋老师文章目录一、旋转编码器原理与驱动结构1.1旋转编码器工作原理1.2驱动程序结构二、方向判断方法深度解析2.1核心判断逻辑2.2两种判断方法对比三、卡死问题解决方案3.1卡死检测机制3.2卡死恢复流程四、关键代码解析4.1初始化函数4.2核心读取函数五、项目开发注意事项六、扩展
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C