- 机器学习之路:FaceBook预测案例分析----->KNN算法的应用与调优
是一个Bug
机器学习算法人工智能
小白的机器学习之路(二)引子学习机器学习基础:从理论到实践了解机器学习机器学习的定义机器学习的分类机器学习的基本原理掌握数据预处理数据清洗特征选择特征工程分类算法sklearn转换器和预估器KNN算法获取数据数据集划分特征工程—标准化KNN算法引子当前交通大数据业务的需要,需要承担一部分算法工作(数据处理),目标一:学习机器学习基础:了解机器学习的定义、分类和基本原理。掌握数据预处理:学习数据清洗
- 案例为师实战为王-开启Python机器学习之路视频教程+课件
globals_11de
─章节01:Python基础与科学计算库numpy│课时1:Python基础2910.mp4│课时2:Python核心结构5750.mp4│课时3:Numpy数组3518.mp4│├─章节02:数据分析处理Pandas库│课时4:Numpy常用函数3344.mp4│课时5:Pandas数据处理方法5926.mp4│课时6:Pandas核心操作2542.mp4│├─章节03:回归算法│课时7:机器学
- 仅需10分钟:开启你的机器学习之路
Datawhale
选自freecodecamp作者:TirmidziFaizalAflahi机器之心编译机器学习之路虽漫漫无垠,但莘莘学子依然纷纷投入到机器学习的洪流中。如何更有效地开始机器学习呢?所谓「八仙过海,各显神通」,本文作者以Python语言为工具进行机器学习,并以Kaggle竞赛中的泰坦尼克号项目进行详细解读。跟着小编来看看吧!随着行业内机器学习的崛起,能够帮用户快速迭代整个过程的工具变得至关重要。Py
- 机器学习之路:基于pytorch实现完成的模型训练套路
是一个Bug
机器学习pytorch人工智能
小白的机器学习之路(五)引子假设model是你的PyTorch模型创建一个与模型结构一致的新实例加载保存的模型参数假设model是你的PyTorch模型简单的线性回归模型的算法实现,可视化引子当前交通大数据业务的需要,需要承担一部分算法工作(数据处理)目标五:学习深度学习框架:学习使用PyTorch或TensorFlow等深度学习框架。目标任务:使用深度学习框架搭建一个更复杂的神经网络,并在一个数
- 机器学习之路
编程小兔崽
原创:编程TWO编程小兔崽今天机器学习方法一检索能力最近有朋友问我是如何学习机器学习的,说最近机器学习、人工智能这些特别火,以后想走机器学习。有这个想法是特别好的,但是跟大家说,如果是因为机器学习工资高,最近特别火而想走机器学习,基本上是凉凉的、没戏。今天我把我这几个项目的演示过程分享给大家,让大家了解了解工智能,有一个大概的,什么是人工智能。我不建议大家刚刚学编程就去看机器学习的视频资料,有能力
- 小白的机器学习之路(四)神经网络的初步认识:基于pytorch搭建自己的神经网络
是一个Bug
机器学习机器学习神经网络pytorch
小白的机器学习之路(四)引子神经网络的基本结构反向传播算法和激活函数优化器如何通过pytorch搭建自己的BPnetwork引子当前交通大数据业务的需要,需要承担一部分算法工作(数据处理),考虑到上次研究深度学习算法还是两年前,我薄弱的基础已经无法支持当前的工作,通过前期的学习准备(其它算法工程师和chatgpt的帮助),制定了五天的初步复习计划----初步定为:目标四:学习深度学习基础:了解神经
- python svr回归_机器学习入门之机器学习之路:python支持向量机回归SVR 预测波士顿地区房价...
weixin_39755712
pythonsvr回归
本文主要向大家介绍了机器学习入门之机器学习之路:python支持向量机回归SVR预测波士顿地区房价,通过具体的内容向大家展现,希望对大家学习机器学习入门有所帮助。支持向量机的两种核函数模型进行预测git:https://github.com/linyi0604/MachineLearningfromsklearn.datasetsimportload_bostonfromsklearn.cross
- 如何开始机器学习
SakuraForever
机器学习
在开始机器学习之路前,我们首先谈谈何为技术。不是学了python就是走上了机器学习,不是学了Tensorfolw,caffe2就是开发者。互联网上的追捧,培训班的速成承诺,掀起了一股莫名的风气,仿佛一夜之间,大家都能在短时间内,按照一门教程,顺利走上一条康庄大道。如果你也是这么想。那么还是出门右拐去百度云盘搜索“XXX速成班”吧,享受群体的狂欢。如果你愿意继续看下去,那么我要说,技术,必然是枯燥的
- 【机器学习之路】开山篇 | 机器学习介绍及其类别和概念阐述
计算机魔术师
机器学习逻辑回归算法python人工智能
♂️个人主页:@计算机魔术师作者简介:CSDN内容合伙人,全栈领域优质创作者。机器学习之路系列(一)作者:计算机魔术师版本:1.0(2022.2.25)注释:文章会不定时更新补充文章目录前言一、机器学习概览1.1有监督学习和无监督学习1.1.1监督学习1.1.2无监督学习1.1.3半监督学习1.1.4强化学习1.2批量学习和在线学习1.2.1在线学习1.2.2增量学习1.2.3核外学习1.2.
- 祭天
xian_yu
仅以此文开启我的小白机器学习之路对于想入门的同学来说,最有名的莫过于TensorFLow了,下面就所以说一下我如何配置1,python与anacoda,然后添加环境变量,注意anacoda添加的是\yourpath\Scripts2,cuda,确认你的显卡在Nvidia的支持CUDA加速的显卡列表中。https://developer.nvidia.com/cuda-gpushttps://dev
- 2021版 | 机器学习入门指南
人工智能与算法学习
算法编程语言python机器学习人工智能
这是为朋友社群准备的一篇机器学习入门指南,分享了我机器学习之路看过的一些书、教程、视频,还有学习经验和建议,希望能对大家的学习有所帮助。pdf版思维导图,后台回复:指南Python——书之前跟出版社合作,书柜里积攒了很多Python相关的书,这里推荐三本最有价值的吧:《流畅的Python》,很厚,比较全面,可以作为工具书常常翻看。《Python编程从入门到实践(第2版)》非常全面,对新手还算友好,
- python机器学习手写字体识别,机器学习之路: python 支持向量机 LinearSVC 手写字体识别...
诗遥一妈
使用python3学习sklearn中支持向量机api的使用可以来到我的git下载源代码:https://github.com/linyi0604/MachineLearning#导入手写字体加载器fromsklearn.datasetsimportload_digitsfromsklearn.cross_validationimporttrain_test_splitfromsklearn.pr
- l2正则化python_机器学习入门之机器学习之路: python线性回归 过拟合 L1与L2正则化...
weixin_39831705
l2正则化python
本文主要向大家介绍了机器学习入门之机器学习之路:python线性回归过拟合L1与L2正则化,通过具体的内容向大家展现,希望对大家学习机器学习入门有所帮助。正则化:提高模型在未知数据上的泛化能力避免参数过拟合正则化常用的方法:在目标函数上增加对参数的惩罚项削减某一参数对结果的影响力度L1正则化:lasso在线性回归的目标函数后面加上L1范数向量惩罚项。f=w*x^n+b+k*||w||1x为输入的样
- 从0开始学习深度强化学习之深度学习和深度强化学习的区别之浅显理解
脉动人生
DRL采坑之路游戏神经网络算法强化学习深度学习
引文机器学习之路路阻且长,在我从本科到研究生期间也见过很多机器学习的算法,像很多都是CNN,ANN什么什么NN啥的。在刚开始入门深度强化学习的时候,我也觉得深度强化学习(DeepReinforcementLearing)是一个很高级的东西,在网上查到谷歌的Deepmind搞出来的Alphago就是利用深度强化学习算法搞出来的。但是对于刚开始入门深度强化学习之前无任何机器学习经验的同学来说,可能就略
- python识别虚假新闻的分类器_机器学习之路: python 朴素贝叶斯分类器 MultinomialNB 预测新闻类别...
weixin_39807541
1fromsklearn.datasetsimportfetch_20newsgroups2fromsklearn.cross_validationimporttrain_test_split3#导入文本特征向量转化模块4fromsklearn.feature_extraction.textimportCountVectorizer5#导入朴素贝叶斯模型6fromsklearn.naive_bay
- python主成分分析法降维_机器学习之路:python 特征降维 主成分分析 PCA
梨漾
python主成分分析法降维
1fromsklearn.svmimportLinearSVC2fromsklearn.metricsimportclassification_report3fromsklearn.decompositionimportPCA4importpandasaspd5importnumpyasnp6‘‘‘7主成分分析:8特征降低维度的方法。9提取主要特征成分,有关联的特征进行运算组合10丢弃不显著的特征
- sklearn的机器学习之路:逻辑回归
Augus_Xu
机器学习线性模型逻辑回归机器学习
1.基础概念sigmoid函数:处理二分类问题时,我们最后需要输出分类结果[0,1],而回归得到的是一个(−∞,+∞)(−∞,+∞)的数,因此我们需要使用sigmoid函数。函数定义:其图像为:通过输入的x而转变成(0,1)的数,此处x应该为预测的值,即c0x0+c1x1+...+cnxnc0x0+c1x1+...+cnxn,因此上式可转变为f(x)=11+e−(c0x0+c1x1+...+cnx
- 我的机器学习之路
来自文家市的那个小孩
规划机器学习
重拾丢弃四年的课本,毅然考取交大研究生,回来继续深造,也算一个机遇,因为15年的时候大数据开始成为风口。来到交大,也可谓一波三折,最开始误打误撞进入无线网实验室,偏离了初衷,好在有换导师的机会,挑出这个坑,进入自然语言处理实验室,它是人工智能上的明珠,跌跌撞撞,在里面软磨硬泡半年有余,却始终不是滋味,于是再次鼓起勇气,跳出原来的圈子,进入机器学习的研究领域。研究生阶段虽然快要结束,但真正我在这一领
- python 多项式拟合 多特征值_机器学习之路:python 多项式特征生成PolynomialFeatures 欠拟合与过拟合...
weixin_40008870
python多项式拟合多特征值
分享一下线性回归中欠拟合和过拟合是怎么回事~为了解决欠拟合的情经常要提高线性的次数建立模型拟合曲线,次数过高会导致过拟合,次数不够会欠拟合。再建立高次函数时候,要利用多项式特征生成器生成训练数据。下面把整个流程展示一下模拟了一个预测蛋糕价格的从欠拟合到过拟合的过程git:https://github.com/linyi0604/MachineLearning在做线性回归预测时候,为了提高模型的泛化
- 程序员如何开启机器学习之路?我也遇到过这个问题
weixin_34409357
大数据嵌入式数据结构与算法
我曾是一名想进入AI行业的软件开发者。为了更快熟悉这里边的门道,我阅读了机器学习的书籍,浏览了不少帖子,还学习了Coursera上关于机器学习的课程。但是,但是,依然不知道如何开始…...你是否也有这样的经历呢?图片版权归PeterAlfredHess所有很多开发者都问我:我该如何开始学习机器学习?记不清有多少人问过这个问题了。鉴于此,我专门写了一篇文章来解答大家的疑惑。通过本文,你会知道:为什么
- pytorch 训练过程可视化
qq_40127191
pytorchpytorch深度学习人工智能
使用pythonTqdm进度条库让你的python进度可视化-pytorch中文网211024-Pytorch模型训练中显示进度条_专注机器学习之路-CSDN博客_pytorch训练进度条从keras转到pytorch,没有进度显示,很难受。使用tqdm可以解决。ps:同时碰到速度慢的问题,减少io操作即可。
- 2015.2.8--记录我的机器学习之路--现代启发式算法之蚁群算法
懒懒的兔斯基
算法蚁群算法启发式搜索机器学习machinelearning
蚁群算法对于经典的模型算法,已有太多前人为我们写下各种攻略,我就先整理下我在学习过程中查阅的并觉得讲解得不错的文章吧,之后再慢慢补充我自己反思之后的体会~---------------------------------------------------------------------------------------------------------------------------
- 2015.2.7--记录我的机器学习之路--现代启发式算法之遗传算法
懒懒的兔斯基
记录我的机器学习之路machinelearning启发式搜索机器学习算法遗传算法
遗传算法对于经典的模型算法,已有太多前人为我们写下各种攻略,我就先整理下我在学习过程中查阅的并觉得讲解得不错的文章吧,之后再慢慢补充我自己反思之后的体会~---------------------------------------------------------------------------------------------------------------------------
- 【机器学习之路】(转载)
YYIverson
【数据分析】机器学习与统计学机器学习人工智能广告
作者主页:https://www.nowcoder.com/profile/210306401/myDiscussPost【我的机器学习入门之路(上)——传统机器学习】这篇博客主要记录了我自己的学习路线及相应的资料汇总。总时间跨度约为6个月,主要是利用了晚上的时间和周末的时间,每天坚持下来,日积月累,回过头来,可能会惊讶于自己的进步。对于一个机器学习的小白来说,往往不知道如何入门机器学习,毕竟机器
- <阿瑶机器学习之路>使用SNN对DEAP数据集进行情绪四分类
七七鸭灬
SNN阿瑶机器学习之路分类人工智能
目录SNN基础知识讲解DEAP数据集介绍使用SNN搭建一维Resnet网络进行情绪分类尾言SNN基础知识讲解SpikingNeuralNetwork(脉冲神经网络,SNN)简介第一代神经网络(感知器),第二代神经网络(ANN)它们都是基于神经脉冲的发放频率进行编码,但是神经元的脉冲发放频率并不能完全捕获脉冲序列种包含的信息,因此第三代神经网络(SNN)登场了。第三代神经网络具有更强的生物可解释性的
- 机器学习之路——KNN+交叉验证
qq_39623031
机器学习算法人工智能
KNN分类模型概念:简单地说,K-近邻算法采用测量不同特征值之间的距离方法进行分类(k-NearestNeighbor,KNN)k值的作用欧几里得距离(EuclideanDistance)如何进行电影分类众所周知,电影可以按照题材分类,然而题材本身是如何定义的?由谁来判定某部电影属于哪个题材?也就是说同一题材的电影具有哪些公共特征?这些都是在进行电影分类时必须要考虑的问题。没有哪个电影人会说自己制
- 机器学习之路--机器学习算法一览,应用建议与解决思路
abzs30820
人工智能python大数据
作者:寒小阳时间:2016年1月。出处:http://www.lai18.com/content/2440126.html声明:版权所有,转载请联系作者并注明出处1.引言提起笔来写这篇博客,突然有点愧疚和尴尬。愧疚的是,工作杂事多,加之懒癌严重,导致这个系列一直没有更新,向关注该系列的同学们道个歉。尴尬的是,按理说,机器学习介绍与算法一览应该放在最前面写,详细的应用建议应该在讲完机器学习常用算法之
- 我的机器学习之路 第一关
大梦想家林先生
机器学习之路(之半途而废)机器学习监督学习无监督学习
一、初始机器学习1.什么是机器学习?使计算机像人一样,能够通过观察学习获得经验。2.机器学习的分类:监督学习、无监督学习、强化学习以及推荐系统。3.监督学习(1)定义:给定计算机一定的规则参照,让其对数据进行分析,预测其输出,做出好的决策;(2)分类:回归问题(预测连续值输出)分类问题(预测离散值输出)理解:回归问题和分类问题的区别在于对预测结果类型的不同。例如房价的预测就是连续性的,就属于回归问
- 机器学习之路15
天天学习学习
机器学习聚类算法
无监督学习没有目标值--->无监督学习。无监督学习的算法包括,PCA(降维)和K-Means聚类算法。K-Means聚类算法:算法的原理。聚类效果图算法的步骤:APIK—means算法的模型评估模型评估的API代码:
- 机器学习之路14
天天学习学习
机器学习逻辑回归人工智能
逻辑回归逻辑回归应用于二分类问题,例如:逻辑回归的原理输入逻辑回归的输入就是一个线性回归的结果激活函数sigmoid函数:回归的结果输入到sigmoid函数当中输出的结果是一个在[0,1]当中的概率值,阈值默认为0.5(即大于0.5为是,小于0.5为否)损失机器优化在逻辑回归中,称之为对数拟然损失,公式如下:那么我们如何理解这个式子呢?可以看到,当hg(x)==1时,损失函数的值为0,当hg(x)
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found