论文分享-->word2Vec论文总结

一直以来,对 word2vec ,以及对 tensorflow 里面的 wordEmbedding 底层实现原理一直模糊不清,由此决心阅读 word2Vec 的两篇原始论文, Efficient Estimation of Word Representations in Vector Space Distributed Representations of Words and Phrases and their Compositionality ,看完以后还是有点半懂半不懂的感觉,于是又结合网上的一些比较好的讲解(Word2Vec Tutorial - The Skip-Gram Model),以及开源的实现代码理解了一遍,在此总结一下。
论文分享-->word2Vec论文总结_第1张图片

下面主要以 skipgram 模型来介绍 word2Vec

word2vec工作流程

  1. word2Vec 只是一个三层 的神经网络。
  2. 喂给模型一个 word ,然后用来预测它周边的词。
  3. 然后去掉最后一层,只保存 input_layer hidden_layer
  4. 从词表中选取一个词,喂给模型,在 hidden_layer 将会给出该词的 embedding repesentation
import numpy as np
import tensorflow as tf
corpus_raw = 'He is the king . The king is royal . She is the royal  queen '
# convert to lower case
corpus_raw = corpus_raw.lower()

上述代码非常简单和易懂,现在我们需要获取 input output pair ,假设我们现在有这样一个任务,喂给模型一个词,我们需要获取它周边的词,举例来说,就是获取该词前 n 个和后 n 个词,那么这个 n 就是代码中的 window_size ,例如下图:

论文分享-->word2Vec论文总结_第2张图片

注意:如果这个词是一个句子的开头或结尾, window 忽略窗外的词。

我们需要对文本数据进行一个简单的预处理,创建一个 word2int 的字典和 int2word 的字典。

words = []
for word in corpus_raw.split():
    if word != '.': # because we don't want to treat . as a word
        words.append(word)
words = set(words) # so that all duplicate words are removed
word2int = {}
int2word = {}
vocab_size = len(words) # gives the total number of unique words
for i,word in enumerate(words):
    word2int[word] = i
    int2word[i] = word

来看看这个字典有啥效果:

print(word2int['queen'])
-> 42 (say)
print(int2word[42])
-> 'queen'

好,现在可以获取训练数据啦

data = []
WINDOW_SIZE = 2
for sentence in sentences:
    for word_index, word in enumerate(sentence):
        for nb_word in sentence[max(word_index - WINDOW_SIZE, 0) : min(word_index + WINDOW_SIZE, len(sentence)) + 1] : 
            if nb_word != word:
                data.append([word, nb_word])

上述代码就是切句子,然后切词,得出的一个个训练样本 [word, nb_word] ,其中 word 就是模型输入, nb_word 就是该词周边的某个单词。

data 打印出来看看?

print(data)
[['he', 'is'],
 ['he', 'the'],
 ['is', 'he'],
 ['is', 'the'],
 ['is', 'king'],
 ['the', 'he'],
 ['the', 'is'],
 ['the', 'king'],
.
.
.
]

现在我们有了训练数据了,但是需要将它转成模型可读可理解的形式,这时,上面的 word2int 字典的作用就来了。

来,我们更进一步的对 word 进行处理,并使其转成 onehot 向量

i.e., 
say we have a vocabulary of 3 words : pen, pineapple, apple
where 
word2int['pen'] -> 0 -> [1 0 0]
word2int['pineapple'] -> 1 -> [0 1 0]
word2int['apple'] -> 2 -> [0 0 1]

那么为啥是 onehot 特征呢?稍后将解释。

# function to convert numbers to one hot vectors
def to_one_hot(data_point_index, vocab_size):
    temp = np.zeros(vocab_size)
    temp[data_point_index] = 1
    return temp
x_train = [] # input word
y_train = [] # output word
for data_word in data:
    x_train.append(to_one_hot(word2int[ data_word[0] ], vocab_size))
    y_train.append(to_one_hot(word2int[ data_word[1] ], vocab_size))
# convert them to numpy arrays
x_train = np.asarray(x_train)
y_train = np.asarray(y_train)

利用 tensorflow 建立模型

# making placeholders for x_train and y_train
x = tf.placeholder(tf.float32, shape=(None, vocab_size))
y_label = tf.placeholder(tf.float32, shape=(None, vocab_size))

论文分享-->word2Vec论文总结_第3张图片

由上图,我们可以看出,我们将 input 转换成 embedding_representation ,并且将 vocabSize 维度降低到设定的 embedding_dim

EMBEDDING_DIM = 5 # you can choose your own number
W1 = tf.Variable(tf.random_normal([vocab_size, EMBEDDING_DIM]))
b1 = tf.Variable(tf.random_normal([EMBEDDING_DIM])) #bias
hidden_representation = tf.add(tf.matmul(x,W1), b1)

接下来,我们需要使用 softmax 函数来预测该 word 周边的词。

论文分享-->word2Vec论文总结_第4张图片

W2 = tf.Variable(tf.random_normal([EMBEDDING_DIM, vocab_size]))
b2 = tf.Variable(tf.random_normal([vocab_size]))
prediction = tf.nn.softmax(tf.add( tf.matmul(hidden_representation, W2), b2))

所以整体的过程如下:

论文分享-->word2Vec论文总结_第5张图片

input_one_hot  --->  embedded repr. ---> predicted_neighbour_prob
predicted_prob will be compared against a one hot vector to correct it.

好了,来看看怎么训这个模型

sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init) #make sure you do this!
# define the loss function:
cross_entropy_loss = tf.reduce_mean(-tf.reduce_sum(y_label * tf.log(prediction), reduction_indices=[1]))
# define the training step:
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(cross_entropy_loss)
n_iters = 10000
# train for n_iter iterations
for _ in range(n_iters):
    sess.run(train_step, feed_dict={x: x_train, y_label: y_train})
    print('loss is : ', sess.run(cross_entropy_loss, feed_dict={x: x_train, y_label: y_train}))

在训的过程中,你可以看到 loss 的变化:

loss is :  2.73213
loss is :  2.30519
loss is :  2.11106
loss is :  1.9916
loss is :  1.90923
loss is :  1.84837
loss is :  1.80133
loss is :  1.76381
loss is :  1.73312
loss is :  1.70745
loss is :  1.68556
loss is :  1.66654
loss is :  1.64975
loss is :  1.63472
loss is :  1.62112
loss is :  1.6087
loss is :  1.59725
loss is :  1.58664
loss is :  1.57676
loss is :  1.56751
loss is :  1.55882
loss is :  1.55064
loss is :  1.54291
loss is :  1.53559
loss is :  1.52865
loss is :  1.52206
loss is :  1.51578
loss is :  1.50979
loss is :  1.50408
loss is :  1.49861
.
.
.

最终 loss 会收敛,即使其 accuracy 不能达到很高的水平,我们并不 care 这点,我们最终的目的是获取较好的 W1 b1 ,也就是 hidden_repesentation

为什么是 onehot

论文分享-->word2Vec论文总结_第6张图片

当我们用 onehot 向量乘以 W1 时,获取的是 W1 矩阵的某一行,所以 W1 扮演的是一个 look up table

在我们这个代码例子中,可以看看 "queen" 1 中的 repesetation

print(vectors[ word2int['queen'] ])
# say here word2int['queen'] is 2
-> 
[-0.69424796 -1.67628145  3.07313657 -1.14802659 -1.2207377 ]

给定一个向量,我们可以获取与其最近的向量

def euclidean_dist(vec1, vec2):
    return np.sqrt(np.sum((vec1-vec2)**2))

def find_closest(word_index, vectors):
    min_dist = 10000 # to act like positive infinity
    min_index = -1
    query_vector = vectors[word_index]
    for index, vector in enumerate(vectors):
        if euclidean_dist(vector, query_vector) < min_dist and not np.array_equal(vector, query_vector):
            min_dist = euclidean_dist(vector, query_vector)
            min_index = index
    return min_index

我们来看看,与 "king""queen""royal" 最近的词:

print(int2word[find_closest(word2int['king'], vectors)])
print(int2word[find_closest(word2int['queen'], vectors)])
print(int2word[find_closest(word2int['royal'], vectors)])
->
queen
king
he

进阶

上面总结的主要是第一篇论文 Efficient Estimation of Word Representations in Vector Space 内的内容,虽然只是一个三层的神经网络,但是在海量训练数据的情况下,需要极大的计算资源来支撑整个过程,举例来说,我们设定的 embedding_size=300 时,而 vocab_size=10,000 时,这时 W1 矩阵的维度就达到了 10,000300=3million !!,这个时候再用 SGD 来优化训练过程就显得十分缓慢,但是有时候你必须使用大量的数据来训练模型来避免过拟合。论文 Distributed Representations of Words and Phrases and their Compositionality 介绍了几种解决办法。

  1. 采用下采样来降低训练样本数量
    tensorflow 里面实现的 word2Vec vocab_szie 并不是所有的 word 的数量,而且先统计了所有 word 的出现频次,然后选取出现频次最高的前 50000 的词作为词袋。具体操作请看代码 tensorflow/examples/tutorials/word2vec/word2vec_basic.py,其余的词用 unk 代替。
  2. 采用一种所谓的”负采样”的操作,这种操作每次可以让一个样本只更新权重矩阵中一小部分,减小训练过程中的计算压力。
    举例来说:一个 input output pair 如: (fox,quick) ,由上面的分析可知,其 true label 为一个 onehot 向量,并且该向量只是在 quick 的位置为1,其余的位置均为0,并且该向量的长度为 vocab size ,由此每个样本都缓慢能更新权重矩阵,而”负采样”操作只是随机选择其余的部分 word ,使得其在 true label 的位置为0,那么我们只更新对应位置的权重。例如我们如果选择负采样数量为5,则选取5个其余的 word ,使其对应的 output 为0,这个时候 output 只是6个神经元,本来我们一次需要更新 30010,000 参数,进行负采样操作以后只需要更新 30061800 个参数。

个人感觉 word2Vec 了解到这个程度差不多了。

完整代码:

import tensorflow as tf
import numpy as np

corpus_raw = 'He is the king . The king is royal . She is the royal  queen '

# convert to lower case
corpus_raw = corpus_raw.lower()

words = []
for word in corpus_raw.split():
    if word != '.': # because we don't want to treat . as a word
        words.append(word)

words = set(words) # so that all duplicate words are removed
word2int = {}
int2word = {}
vocab_size = len(words) # gives the total number of unique words

for i,word in enumerate(words):
    word2int[word] = i
    int2word[i] = word

# raw sentences is a list of sentences.
raw_sentences = corpus_raw.split('.')
sentences = []
for sentence in raw_sentences:
    sentences.append(sentence.split())

WINDOW_SIZE = 2

data = []
for sentence in sentences:
    for word_index, word in enumerate(sentence):
        for nb_word in sentence[max(word_index - WINDOW_SIZE, 0) : min(word_index + WINDOW_SIZE, len(sentence)) + 1] : 
            if nb_word != word:
                data.append([word, nb_word])

# function to convert numbers to one hot vectors
def to_one_hot(data_point_index, vocab_size):
    temp = np.zeros(vocab_size)
    temp[data_point_index] = 1
    return temp

x_train = [] # input word
y_train = [] # output word

for data_word in data:
    x_train.append(to_one_hot(word2int[ data_word[0] ], vocab_size))
    y_train.append(to_one_hot(word2int[ data_word[1] ], vocab_size))

# convert them to numpy arrays
x_train = np.asarray(x_train)
y_train = np.asarray(y_train)

# making placeholders for x_train and y_train
x = tf.placeholder(tf.float32, shape=(None, vocab_size))
y_label = tf.placeholder(tf.float32, shape=(None, vocab_size))

EMBEDDING_DIM = 5 # you can choose your own number
W1 = tf.Variable(tf.random_normal([vocab_size, EMBEDDING_DIM]))
b1 = tf.Variable(tf.random_normal([EMBEDDING_DIM])) #bias
hidden_representation = tf.add(tf.matmul(x,W1), b1)

W2 = tf.Variable(tf.random_normal([EMBEDDING_DIM, vocab_size]))
b2 = tf.Variable(tf.random_normal([vocab_size]))
prediction = tf.nn.softmax(tf.add( tf.matmul(hidden_representation, W2), b2))


sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init) #make sure you do this!

# define the loss function:
cross_entropy_loss = tf.reduce_mean(-tf.reduce_sum(y_label * tf.log(prediction), reduction_indices=[1]))

# define the training step:
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(cross_entropy_loss)

n_iters = 10000
# train for n_iter iterations

for _ in range(n_iters):
    sess.run(train_step, feed_dict={x: x_train, y_label: y_train})
    print('loss is : ', sess.run(cross_entropy_loss, feed_dict={x: x_train, y_label: y_train}))

vectors = sess.run(W1 + b1)

def euclidean_dist(vec1, vec2):
    return np.sqrt(np.sum((vec1-vec2)**2))

def find_closest(word_index, vectors):
    min_dist = 10000 # to act like positive infinity
    min_index = -1
    query_vector = vectors[word_index]
    for index, vector in enumerate(vectors):
        if euclidean_dist(vector, query_vector) < min_dist and not np.array_equal(vector, query_vector):
            min_dist = euclidean_dist(vector, query_vector)
            min_index = index
    return min_index


from sklearn.manifold import TSNE

model = TSNE(n_components=2, random_state=0)
np.set_printoptions(suppress=True)
vectors = model.fit_transform(vectors) 

from sklearn import preprocessing

normalizer = preprocessing.Normalizer()
vectors =  normalizer.fit_transform(vectors, 'l2')

print(vectors)

import matplotlib.pyplot as plt


fig, ax = plt.subplots()
print(words)
for word in words:
    print(word, vectors[word2int[word]][1])
    ax.annotate(word, (vectors[word2int[word]][0],vectors[word2int[word]][1] ))
plt.show()

你可能感兴趣的:(自然语言处理)