实现人脸识别 (vs2013+opencv3.0)

脸部识别实现(vs2013+opencv3.0)

第一种实现

  1. 这种是通过研究源码 更改而来,第二种是第一种的简化,代码少了很多,而且逻辑比较清楚;具体的实现在代码里面有注释,虽然是英文的,还是比较简单,需要注意的一个api就是:cascade.detectMultiScale()

  2. cascade.detectMultiScale()理解:

            #include "opencv2/objdetect.hpp"
            #include "opencv2/imgcodecs.hpp"
            #include "opencv2/videoio.hpp"
            #include "opencv2/highgui.hpp"
            #include "opencv2/imgproc.hpp"
            #include "opencv2/core/utility.hpp"
            
            #include "opencv2/videoio/videoio_c.h"
            #include "opencv2/highgui/highgui_c.h"
            
            #include 
            #include 
            #include 
            #include 
            
            using namespace std;
            using namespace cv; 
            void detectAndDraw(Mat& img, CascadeClassifier& cascade,
            CascadeClassifier& nestedCascade,
            double scale, bool tryflip);
        
        //要使用到的两个cascade文件,用于联合检测人脸,opencv自带了多个xml文件,在opencv安装目录下的/source/data/haarcascades/ 文件夹内
        string cascadeName = "D:\\opencv\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_alt.xml";
        //D:\opencv\opencv\sources\data\haarcascades
        string nestedCascadeName = "D:\\opencv\\opencv\\sources\\data\\haarcascades\\haarcascade_eye_tree_eyeglasses.xml";//检测眼睛
        
        int main()
        {
            CvCapture* capture = 0;
            Mat frame, frameCopy, image;
            CascadeClassifier cascade, nestedCascade;//D:\\code\\opencv\\face\\face\\face\\2.jpg
            char *srcImageFile = "D:\\code\\opencv\\face\\face\\face\\2.jpg";//测试图片
            double scale = 1.3;
            if (!cascade.load(cascadeName))//载入cascade文件
            {
                cerr << "ERROR: Could not load classifier cascade" << endl;
                return -1;
            }
        
            cv::VideoCapture camera(CV_CAP_ANY);
            if (!camera.isOpened())
                return -1;
        
            // 得到帧率  
            double rate = camera.get(CV_CAP_PROP_FPS);
        
            cvNamedWindow("result", 1);
            while (true)
            {
                if (!camera.read(image))
                    break;
                detectAndDraw(image, cascade, nestedCascade, scale, 0);//检测人脸
                int c = waitKey(20);
                if ((char)c == 27)break;
            }
            //以下部分为实现加载图片然后检测
            //image = imread(srcImageFile);
            //cout << "In image read" << endl;
            //if (!image.empty())
            //{
            //  detectAndDraw(image, cascade, nestedCascade, scale, 0);//检测人脸
            //  waitKey(0);
            //}
            cvDestroyWindow("result");
            camera.release();
            return 0;
        }
        
        void detectAndDraw(Mat& img, CascadeClassifier& cascade,CascadeClassifier& nestedCascade,double scale, bool tryflip)
        {
            int i = 0;
            double t = 0;
            vector faces, faces2;
            const static Scalar colors[] = {
                CV_RGB(0, 0, 255),
                CV_RGB(0, 128, 255),
                CV_RGB(0, 255, 255),
                CV_RGB(0, 255, 0),
                CV_RGB(255, 128, 0),
                CV_RGB(255, 255, 0),
                CV_RGB(255, 0, 0),
                CV_RGB(255, 0, 255) };//用于画线
            Mat gray, smallImg(cvRound(img.rows / scale), cvRound(img.cols / scale), CV_8UC1);
        
            cvtColor(img, gray, COLOR_BGR2GRAY);
            resize(gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR);
            equalizeHist(smallImg, smallImg);
        
            t = (double)cvGetTickCount();
            cascade.detectMultiScale(smallImg, faces,
                1.1, 2, 0
                //|CASCADE_FIND_BIGGEST_OBJECT
                //|CASCADE_DO_ROUGH_SEARCH
                | CASCADE_SCALE_IMAGE,
                Size(30, 30));
            if (tryflip)
            {
                flip(smallImg, smallImg, 1);
                cascade.detectMultiScale(smallImg, faces2,
                    1.1, 2, 0
                    //|CASCADE_FIND_BIGGEST_OBJECT
                    //|CASCADE_DO_ROUGH_SEARCH
        
                    | CASCADE_SCALE_IMAGE,
                    Size(30, 30));
                for (vector::const_iterator r = faces2.begin(); r != faces2.end(); r++)
                {
                    faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height));
                }
            }
            t = (double)cvGetTickCount() - t;
            printf("detection time = %g ms\n", t / ((double)cvGetTickFrequency()*1000.));
            for (vector::const_iterator r = faces.begin(); r != faces.end(); r++, i++)
            {
                Mat smallImgROI;
                vector nestedObjects;
                Point center;
                Scalar color = colors[i % 8];
                int radius;
        
                double aspect_ratio = (double)r->width / r->height;
                if (0.75 < aspect_ratio && aspect_ratio < 1.3)
                {
                    center.x = cvRound((r->x + r->width*0.5)*scale);
                    center.y = cvRound((r->y + r->height*0.5)*scale);
                    radius = cvRound((r->width + r->height)*0.25*scale);
                    circle(img, center, radius, color, 3, 8, 0);
                }
                else
                    rectangle(img, cvPoint(cvRound(r->x*scale), cvRound(r->y*scale)),
                    cvPoint(cvRound((r->x + r->width - 1)*scale), cvRound((r->y + r->height - 1)*scale)),
                    color, 3, 8, 0);
                if (nestedCascade.empty())
                    continue;
                smallImgROI = smallImg(*r);
                nestedCascade.detectMultiScale(smallImgROI, nestedObjects,
                    1.1, 2, 0
                    //|CASCADE_FIND_BIGGEST_OBJECT
                    //|CASCADE_DO_ROUGH_SEARCH
                    //|CASCADE_DO_CANNY_PRUNIN
        
                    | CASCADE_SCALE_IMAGE
                    ,
                    Size(30, 30));
                for (vector::const_iterator nr = nestedObjects.begin(); nr != nestedObjects.end(); nr++)
                {
                    center.x = cvRound((r->x + nr->x + nr->width*0.5)*scale);
                    center.y = cvRound((r->y + nr->y + nr->height*0.5)*scale);
                    radius = cvRound((nr->width + nr->height)*0.25*scale);
                    circle(img, center, radius, color, 3, 8, 0);
                }
            }
            cv::imshow("result", img);
        }
    

第二种实现形式

    #include "opencv2/objdetect.hpp"
    #include "opencv2/highgui.hpp"
    #include "opencv2/imgproc.hpp"
    
    #include 
    #include 
    
    using namespace std;
    using namespace cv;
    
    
    void detectAndDisplay(Mat frame);
    
    String face_cascade_name = "D://opencv//opencv//sources//data//haarcascades//haarcascade_frontalface_alt.xml";
    String eyes_cascade_name = "D://opencv//opencv//sources//data//haarcascades//haarcascade_eye_tree_eyeglasses.xml";
    CascadeClassifier face_cascade;
    CascadeClassifier eyes_cascade;
    String window_name = "Capture - Face detection";
    
    int main(void)
    {
        VideoCapture capture;
        Mat frame;
    
    
        if (!face_cascade.load(face_cascade_name)){ printf("--(!) Error loading face casecade\n"); return -1; }
        if (!eyes_cascade.load(eyes_cascade_name)){ printf("--(!) Error loading eyes cascade\n");  return -1;}
    
    
        //cv::VideoCapture camera(CV_CAP_ANY);
        //if (!camera.isOpened())
        //  return -1;
    
        //open the capture ;and pay attation the CV_CAP_ANY,when you input 0.it' failed ,it appears the device parm is not 0,it convient input CV_CAP_ANY;
        capture.open(CV_CAP_ANY);
        if (!capture.isOpened()){printf("-- Error opening video capture \n");return -1;}
        
        //capture read the frame;
        while (capture.read(frame))
        {
            if (frame.empty()){printf(" -- (!)Error No Capture frame --break"); break;}
            detectAndDisplay(frame);
            int c = waitKey(20);
            if ((char)c == 27){ break; }
    
        }
        return 0;
    }
    
    
    void detectAndDisplay(Mat frame)
    {
        std::vector faces;
        Mat frame_gray;
    
        //convert to gray image,and equailzehist 
        cvtColor(frame, frame_gray, COLOR_BGR2GRAY);
        equalizeHist(frame_gray, frame_gray);
    
        //detect face
        face_cascade.detectMultiScale(frame_gray, faces, 1.1, 2, 0 | CASCADE_SCALE_IMAGE, Size(30, 30));
    
    
        for (size_t i = 0; i < faces.size(); i++)
        {
            //gain the face center coordinate 
            Point center(faces[i].x + faces[i].width / 2, faces[i].y + faces[i].height / 2);
            ellipse(frame, center, Size(faces[i].width / 2, faces[i].height / 2), 0, 0, 360, Scalar(255, 0, 255), 2, 8, 0);
    
    
            Mat faceROI = frame_gray(faces[i]);
            std::vector eyes;
            eyes_cascade.detectMultiScale(faceROI, eyes, 1.1, 2, 0 | CASCADE_SCALE_IMAGE, Size(30, 30));
    
            for (size_t j = 0; j < eyes.size(); j++)
            {
                Point eye_center(faces[i].x + eyes[j].x + eyes[j].width / 2, faces[i].y + eyes[j].y + eyes[j].height / 2);
                int radius = cvRound((eyes[j].width + eyes[j].height)*0.25);
                circle(frame, eye_center, radius, Scalar(255, 0, 0), 4, 8, 0);
            }
        }
        imshow(window_name, frame);
    }

你可能感兴趣的:(实现人脸识别 (vs2013+opencv3.0))