72. 编辑距离


给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

  1. 插入一个字符
  2. 删除一个字符
  3. 替换一个字符

示例 1:

输入: word1 = "horse", word2 = "ros"
输出: 3
解释: 
horse -> rorse (将 'h' 替换为 'r')
rorse -> rose (删除 'r')
rose -> ros (删除 'e')

示例 2:

输入: word1 = "intention", word2 = "execution"
输出: 5
解释: 
intention -> inention (删除 't')
inention -> enention (将 'i' 替换为 'e')
enention -> exention (将 'n' 替换为 'x')
exention -> exection (将 'n' 替换为 'c')
exection -> execution (插入 'u')

思路:dp来做,设dp[i][j]为word1的前i个字符到word2的前j个字符的编辑距离。则状态转移方程为:

dp[i][j]=min(dp[i][j-1]+1,  dp[i-1][j]+1,  dp[i-1][j-1] (if(words1[i-1])==words2[j-1]), dp[i-1][j-1] +1(if(words1[i-1])!=words2[j-1]))。其中:

1、dp[i][j-1]+1,表示word2插入word2[j],或者word1删除word1[i]

2、dp[i-1][j]+1,表示word2删除word2[j],或者word1插入word1[i]

3、dp[i-1][j-1] (if(words1[i-1])==words2[j-1]),不动即可。

4、 dp[i-1][j-1] +1(if(words1[i-1])!=words2[j-1]),最后一个字符替换下。

边界条件,dp[i][0]=i, dp[0][j]=j,代码实现如下:

class Solution {
public:
    int minDistance(string word1, string word2) {
        int m = word1.size(), n = word2.size();
        vector >dp(m+1, vector(n+1, 0));
        for (int i = 0; i <= m; ++i)
            dp[i][0] = i;
        for (int j = 1; j <= n; ++j)
            dp[0][j] = j;
        for (int i = 1; i <= m; ++i){
            for (int j = 1; j <= n; ++j){
                int a = (word1[i-1] == word2[j-1] ? dp[i - 1][j - 1] : dp[i - 1][j - 1] + 1);
                dp[i][j] = min(min(dp[i][j - 1] + 1, dp[i - 1][j] + 1), a);
            }
        }
        return dp[m][n];
    }
};

 

你可能感兴趣的:(leetcode)