学习Tensorflow,写一个超级简单的全卷积,效果没有,只是能跑通,没有dropout。
#!/usr/bin/env python
#coding:utf-8
from __future__ import absolute_import
from __future__ import division
import os,cv2
import numpy as np
import time
import tensorflow as tf
def weight_variable(shape):
# 使用截断的正态分布初始权重
initial = tf.truncated_normal(shape, stddev = 0.01)
return tf.Variable(initial)
def bias_variable(shape):
return tf.Variable(tf.constant(0.0, shape = shape))
def conv_layer(x, W, b):
# W的尺寸是[ksize, ksize, input, output]
conv = tf.nn.conv2d(x, W, strides = [1, 1, 1, 1], padding = 'SAME')
conv_b = tf.nn.bias_add(conv, b)
conv_relu = tf.nn.relu(conv_b)
return conv_relu
def max_pool_layer(x):
return tf.nn.max_pool(x, ksize = [1, 2, 2, 1], strides = [1, 2, 2, 1], padding = 'SAME')
def deconv_layer(x, W, output_shape, b):
# strides = 2 两倍上卷积
# output_shape = [batch_size, output_width, output_height, output_channel],注意第一个是batch_size
# 权重W = [ksize, ksize, output, input]后两位和卷积相反
deconv = tf.nn.conv2d_transpose(x, W, output_shape, strides = [1, 2, 2, 1], padding = 'SAME')
return tf.nn.bias_add(deconv, b)
# 获取数据
def get_data(image_path, label_path):
image_list = os.listdir(image_path)
label_list = os.listdir(label_path)
image_list_arr = []
label_list_arr = []
for file in image_list:
if file[-3:] == 'png':
# cv2.imread('', -1)保持原始数据读入;如果没有-1会以图片形式读入,变成三通道
image = cv2.imread(os.path.join(image_path,file),-1)
#image = transform.resize(image, (512,512))
image_list_arr.append(image)
for file in label_list:
if file[-3:] == 'png':
label = cv2.imread(os.path.join(label_path,file), -1)
label_list_arr.append(label)
return (image_list_arr, label_list_arr)
# 读取下一个batch数据
def next_batch(images, labels, batch_size, shuffle = False):
assert len(images) == len(labels)
if shuffle:
indices = np.arange(len(images))
np.random.shuffle(indices)
for start_idx in range(0, len(images) - batch_size + 1, batch_size):
if shuffle:
exceprt = indices[start_idx : start_idx + batch_size]
else:
exceprt = slice(start_idx, start_idx + batch_size)
yield np.array(images)[exceprt], np.array(labels)[exceprt]
def main():
# 尽量写相对路径
image_path = './data/mri'
label_path = './data/labels'
# 如果内存耗尽可以考虑将batch减小
batch_size = 4
n_epoch = 2
lr = 0.01
images, labels = get_data(image_path, label_path)
ratio = 0.8
length = len(images)
s = np.int(length * ratio)
x_train = images[: s]
y_train = labels[: s]
x_val = images[s: ]
y_val = labels[s:]
keep_prob = tf.placeholder(tf.float32)
# None代表样本数量不固定
x = tf.placeholder(tf.float32, shape = [None, 256, 256, 3])
y = tf.placeholder(tf.float32, shape = [None, 256, 256, 3])
# input 256*256
# weight([ksize, ksize, input, output])
weight1 = weight_variable([3, 3, 3, 64])
bias1 = bias_variable([64])
conv1 = conv_layer(x, weight1, bias1)
# input 256*256
# output 128*128
weight2 = weight_variable([3, 3, 64, 128])
bias2 = bias_variable([128])
conv2 = conv_layer(conv1, weight2, bias2)
pool1 = max_pool_layer(conv2)
# input 128*128
# output 64*64
weight3 = weight_variable([3, 3, 128, 256])
bias3 = bias_variable([256])
conv3 = conv_layer(pool1, weight3, bias3)
pool2 = max_pool_layer(conv3)
# deconv1
# weight([ksize, ksize, output, input])
# 64*64->128*128(pool1)
deconv_weight1 = weight_variable([3, 3, 128, 256])
deconv_b1 = bias_variable([128])
deconv1 = deconv_layer(pool2, deconv_weight1, [batch_size, 128, 128, 128], deconv_b1)
# 与pool1融合,使用add的话deconv和pool的output channel要一致
fuse_pool1 = tf.add(deconv1, pool1)
# deconv2
# 128*128->256*256(input)
deconv_weight2 = weight_variable([3, 3, 64, 128])
deconv_b2 = bias_variable([64])
deconv2 = deconv_layer(fuse_pool1, deconv_weight2, [batch_size, 256, 256, 64], deconv_b2)
# 转换成与输入标签相同的size,获得最后结果
weight16 = weight_variable([3, 3, 64, 3])
bias16 = bias_variable([3])
conv16 = tf.nn.conv2d(deconv2, weight16, strides = [1, 1, 1, 1], padding = 'SAME')
conv16_b = tf.nn.bias_add(conv16, bias16)
logits16 = conv16_b
# loss
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits16, labels=y))
opt = tf.train.AdamOptimizer(1e-4).minimize(loss)
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for epoch in range(n_epoch):
# train
for x_train_batch, y_train_batch in next_batch(x_train, y_train, batch_size, shuffle = True):
_, train_loss = sess.run([opt, loss], feed_dict = {x: x_train_batch, y: y_train_batch})
print ("------trian loss: %f" % train_loss)
# val
val_loss = 0
for x_val_batch, y_val_batch in next_batch(x_val, y_val, batch_size, shuffle = True):
val_loss = sess.run([loss], feed_dict={x: x_val_batch, y: y_val_batch})
print("------val loss : %f" % val_loss)
sess.close()
if __name__ == '__main__':
main()