Datawhale_PyTorch Task2

Task 2 设立计算图并自动计算(给代码截图参考)

  1. numpy和pytorch实现梯度下降法
  2. 设定初始值
  3. 求取梯度
  4. 在梯度方向上进行参数的更新
  5. numpy和pytorch实现线性回归
  6. pytorch实现一个简单的神经网络

这次作业的大部分内容均参考自下面这篇博客文章 https://blog.csdn.net/pengjian444/article/details/71075544 。梯度下降算法理论可以回去查看吴恩达的机器学习视频,下面动手将上边博客的代码跑一遍。
Rosenbrock函数:
f ( x , y ) = ( 1 − x ) 2 + 100 ( y − x 2 ) 2 f(x,y)=(1−x)^2+100(y−x_2)^2 f(x,y)=(1x)2+100(yx2)2
函数 f f f 分别对 x x x y y y 求偏导得到
∂ f ( x , y ) ∂ x = − 2 ( 1 − x ) − 2 ∗ 100 ( y − x 2 ) ∗ 2 x \frac{∂f(x,y)}{∂x}=−2(1−x)−2∗100(y−x^2)∗2x xf(x,y)=2(1x)2100(yx2)2x
∂ f ( x , y ) ∂ y = 2 ∗ 100 ( y − x 2 ) \frac{∂f(x,y)}{∂y}=2∗100(y−x^2) yf(x,y)=2100(yx2)
这里,使用numpy实现梯度下降算法, x x x, y y y的初始值设置为0,函数cal_rosenbrock_prax和cal_rosenbrock_pray求取x和y方向上的梯度。

import numpy as np


def cal_rosenbrock(x1, x2):
    """
    计算rosenbrock函数的值
    :param x1:
    :param x2:
    :return:
    """
    return (1 - x1) ** 2 + 100 * (x2 - x1 ** 2) ** 2


def cal_rosenbrock_prax(x1, x2):
    """
    对x1求偏导
    """
    return -2 + 2 * x1 - 400 * (x2 - x1 ** 2) * x1

def cal_rosenbrock_pray(x1, x2):
    """
    对x2求偏导
    """
    return 200 * (x2 - x1 ** 2)

def for_rosenbrock_func(max_iter_count=100000, step_size=0.001):
    pre_x = np.zeros((2,), dtype=np.float32)
    loss = 10
    iter_count = 0
    while loss > 0.001 and iter_count < max_iter_count:
        error = np.zeros((2,), dtype=np.float32)
        error[0] = cal_rosenbrock_prax(pre_x[0], pre_x[1])
        error[1] = cal_rosenbrock_pray(pre_x[0], pre_x[1])

        for j in range(2):
            pre_x[j] -= step_size * error[j]

        loss = cal_rosenbrock(pre_x[0], pre_x[1])  # 最小值为0

        print("iter_count: ", iter_count, "the loss:", loss)
        iter_count += 1
    return pre_x

if __name__ == '__main__':
    w = for_rosenbrock_func()  
    print(w)

已知函数在 ( 1 , 1 ) (1, 1) (1,1)处有最小值0,梯度下降算法的结果如下:

iter_count:  5759 the loss: 0.0010091979556820377
iter_count:  5760 the loss: 0.0010083502093514948
iter_count:  5761 the loss: 0.0010075028288032883
iter_count:  5762 the loss: 0.0010066566073887067
iter_count:  5763 the loss: 0.0010058099570385917
iter_count:  5764 the loss: 0.0010049644657556017
iter_count:  5765 the loss: 0.0010041200851937761
iter_count:  5766 the loss: 0.0010032768613008629
iter_count:  5767 the loss: 0.0010024340007618712
iter_count:  5768 the loss: 0.0010015915035627475
iter_count:  5769 the loss: 0.0010007493696895125
iter_count:  5770 the loss: 0.0009999075991282626
[0.96840495 0.9376793 ]

下面使用PyTorch搭建一个线性回归模型,参考下面这篇文章 https://jvn.io/aakashns/e556978bda9343f3b30b3a9fd2a25012

import numpy as np
import torch

#Input (temp, rainfall, humidity)
inputs = np.array([[73, 67, 43], 
                   [91, 88, 64], 
                   [87, 134, 58], 
                   [102, 43, 37], 
                   [69, 96, 70]], dtype='float32')
#Targets (apples, oranges)
targets = np.array([[56, 70], 
                    [81, 101], 
                    [119, 133], 
                    [22, 37], 
                    [103, 119]], dtype='float32')
#Convert inputs and targets to tensors
inputs = torch.from_numpy(inputs)
targets = torch.from_numpy(targets)
print(inputs)
print(targets)

#Weights and biases
w = torch.randn(2, 3, requires_grad=True)
b = torch.randn(2, requires_grad=True)
print(w)
print(b)

def model(x):
    return x @ w.t() + b

#Generate predictions
preds = model(inputs)
print(preds)

#Compare with targets
print(targets)

#MSE loss
def mse(t1, t2):
    diff = t1 - t2
    return torch.sum(diff * diff) / diff.numel()
#Compute loss
loss = mse(preds, targets)
print(loss)

#Compute gradients
loss.backward()

#Gradients for weights
print(w)
print(w.grad)

w.grad.zero_()
b.grad.zero_()
print(w.grad)
print(b.grad)

#Generate predictions
preds = model(inputs)
print(preds)
#Calculate the loss
loss = mse(preds, targets)
print(loss)
#Compute gradients
loss.backward()
print(w.grad)
print(b.grad)
#Adjust weights & reset gradients
with torch.no_grad():
    w -= w.grad * 1e-5
    b -= b.grad * 1e-5
    w.grad.zero_()
    b.grad.zero_()
    
print(w)
print(b)
#Calculate loss
preds = model(inputs)
loss = mse(preds, targets)
print(loss)


#Train for 100 epochs
for i in range(100):
    preds = model(inputs)
    loss = mse(preds, targets)
    loss.backward()
    with torch.no_grad():
        w -= w.grad * 1e-5
        b -= b.grad * 1e-5
        w.grad.zero_()
        b.grad.zero_()
#Calculate loss
preds = model(inputs)
loss = mse(preds, targets)
print(loss)
print(preds)
print(targets)

你可能感兴趣的:(Datawhale_PyTorch Task2)