Angrew Machine Learning ex6

gaussianKernel

sim = exp(-sum((x1 - x2) .^ 2) / (2 * sigma ^ 2));

 dataset3Params

rel_vec = [0 0 9999];
val_vec = [0.01 0.03 0.1 0.3 1 3 10 30];
for i = 1:length(val_vec)
  for j = 1:length(val_vec)
    model= svmTrain(X, y, val_vec(i), @(x1, x2) gaussianKernel(x1, x2, val_vec(j)));
    %We would get 8*8 = 64 models, and we could gain the best of them by the cross validation error.
    predictions = svmPredict(model, Xval);
    error = mean(double(predictions ~= yval));
    if error < rel_vec(3)
      rel_vec = [val_vec(i) val_vec(j) error];
    end
  end
end
C = rel_vec(1);
sigma = rel_vec(2);

processEmail

for i=1:length(vocabList)
      if strcmp(vocabList(i), str) == 1
        word_indices = [word_indices; i]; %We choose the same word, so we can get out now.
        break
      end
end

emailFeatures

for i=1:length(word_indices)
  x(word_indices(i)) = 1;
end

这是笔者自己想到一些对吴恩达机器学习课程的编程作业的实现方式,如果你有更好的实现方式,欢迎在评论区讨论。

这里只是部分代码,全部代码在 

https://download.csdn.net/download/ti_an_di/10590380

你可能感兴趣的:(机器学习)