用于保存模型,以后再用就可以直接导入模型进行计算,方便。
例如:
import tensorflow as tf;
import numpy as np;
import matplotlib.pyplot as plt;
v1 = tf.Variable(tf.constant(1, shape=[1]), name='v1')
v2 = tf.Variable(tf.constant(2, shape=[1]), name='v2')
result = v1 + v2
init = tf.initialize_all_variables()
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(init)
saver.save(sess, "/home/penglu/Desktop/lp/model.ckpt")
# saver.restore(sess, "/home/penglu/Desktop/lp/model.ckpt")
# print sess.run(result)
结果:
下次需要使用模型就可以用下面的代码:
import tensorflow as tf;
import numpy as np;
import matplotlib.pyplot as plt;
v1 = tf.Variable(tf.constant(1, shape=[1]), name='v1')
v2 = tf.Variable(tf.constant(2, shape=[1]), name='v2')
result = v1 + v2
init = tf.initialize_all_variables()
saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, "/home/penglu/Desktop/lp/model.ckpt")
print sess.run(result)
或者这个代码:
import tensorflow as tf;
import numpy as np;
import matplotlib.pyplot as plt;
saver = tf.train.import_meta_graph('/home/penglu/Desktop/lp/model.ckpt.meta')
with tf.Session() as sess:
saver.restore(sess, "/home/penglu/Desktop/lp/model.ckpt")
print sess.run(tf.get_default_graph().get_tensor_by_name('add:0'))
输出:
[3]